m基于改进遗传算法优化的双bp神经网络时间序列预测matlab仿真

简介: m基于改进遗传算法优化的双bp神经网络时间序列预测matlab仿真

1.算法描述

   遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

   其主要步骤如下:

1.初始化

   选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。

   通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。

2.选择

  根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

给出目标函数f,则f(bi)称为个体bi的适应度。以

为选中bi为下一代个体的次数。

显然.从式(3—86)可知:

(1)适应度较高的个体,繁殖下一代的数目较多。

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

3.交叉

   对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

image.png

  在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。


   利用遗传算法来优化 BP 神经网络,利用它来学习神经网络 的权值,并在自适应遗传算法的基础上改进遗传算 子,根据适应度变化调节交叉率和变异率,并利用遗 传算法的全局搜索能力对BP 神经网络的初始权重进 行自适应调整,最终得到一个优化的 BP 神经网络.

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png

3.MATLAB核心程序

Max_G      = 20;   
Pop_Size   = 10;   
%交叉概率
P1         = 0.8;
%变异概率
P2         = 0.2;
%节点总数
Num_All    = Num_In*Num_Hidden + Num_Hidden + Num_Hidden*Num_Out + Num_Out;
Lroms      = ones(1,Num_All);        
bound      =[-0.5*ones(Num_All,1) 0.5*ones(Num_All,1)];
 
%初始化
gts        = struct('fitness',zeros(1,Pop_Size),'chrom',[]);
%初始化种群
for i=1:Pop_Size
    %随机种群
    gts.chrom(i,:) = func_ga_code(Lroms,bound); 
    Xx             = gts.chrom(i,:);
    %计算适应度
    gts.fitness(i) = func_fitness2(Xx,Num_In,Num_Hidden,Num_Out,net,train_data,train_aim);   
end
 
fit_mean  = [];                      
fit_best  = [];                     
fit_chrom = [];                       
%最好染色体
[fit_best,ind_best] = min(gts.fitness);
fit_chrom           = gts.chrom(ind_best,:);  
fit_mean            = sum(gts.fitness)/Pop_Size; 
 
Fitness_line        = zeros(1,Max_G);
 
for i=1:Max_G
    i
    if i == 1
       P1s = P1;
       P2s = 1 - P1s;
    else
       P1s = 1/(1 + exp(-1*fit_mean));
       P2s = 1 - P1s; 
    end
    %遗传选择
    gts       = func_select(gts,Pop_Size); 
    fit_mean  = sum(gts.fitness)/Pop_Size;
    %遗传交叉
    gts.chrom = func_cross(P1s,Lroms,gts.chrom,Pop_Size,bound);
    %变异
    gts.chrom = func_mutation(P2s,Lroms,gts.chrom,Pop_Size,i,Max_G,bound);
    %计算适应度 
    for j=1:Pop_Size
        Xx             = gts.chrom(j,:);
        gts.fitness(j) = func_fitness2(Xx,Num_In,Num_Hidden,Num_Out,net,train_data,train_aim);   
    end
    [fit_best2,ind_best2] = min(gts.fitness);
    [fit_worst,ind_worst] = max(gts.fitness);
 
    if fit_best > fit_best2
       fit_best  = fit_best2;
       fit_chrom = gts.chrom(ind_best2,:);
    end
    gts.chrom(ind_worst,:) = fit_chrom;
    gts.fitness(ind_worst) = fit_best;
    fit_mean               = sum(gts.fitness)/Pop_Size;
    Fitness_line(i)        = fit_best;
end
Xx=fit_chrom;
 
%把最优初始阀值权值赋予网络预测
L1 = 1;
L2 = Num_In*Num_Hidden;
w1 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+1;
L2 = Num_In*Num_Hidden+Num_Hidden;
B1 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+Num_Hidden+1;
L2 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out;
w2 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out+1;
L2 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out+Num_Out;
B2 = Xx(L1:L2);
 
net.iw{1,1}=reshape(w1,Num_Hidden,Num_In);
net.lw{2,1}=reshape(w2,Num_Out,Num_Hidden);
net.b{1}=reshape(B1,Num_Hidden,1);
net.b{2}=B2;
%样本的划分
for i = 1:length(C)-LEN
    Price1(:,i) = C(i:i+LEN-1);
    Price2(i)   = C(i+LEN);
end
 
%训练样本
L1 = floor(0.6*length(Price2));
for i = 1:L1
    train_data(:,i) = Price1(:,i); 
    train_aim(i)    = Price2(i);
end
 
%测试样本
L2 = length(Price2) - L1;
for i = 1:L2
    test_data(:,i) = Price1(:,i+L1); 
    test_aim(i)    = Price2(i+L1);
end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%如下的是改进BP网络算法
%定义神经网络的各个层的个数
Num_In     = LEN;
Num_Hidden = 60;
Num_Out    = 1;
%构建BP网络
net        = newff(train_data,train_aim,Num_Hidden);
 
ERR1 = [];
ERR2 = [];
ERR3 = [];
for j = 1:5
    j
    %通过改进遗传算法优化BP参数
    net        = func_newGA(net,Num_In,Num_Hidden,Num_Out,train_data,train_aim);
    %网络训练
    net.trainParam.showWindow = 0;
    net        = train(net,train_data,train_aim);
    outputs    = sim(net,test_data);
    d1         = test_aim*(Maxs-Mins) + Mins;
    d2         = outputs*(Maxs-Mins) + Mins;
    ERR1       = [ERR1,mean(abs(d1-d2)./d2) ];
    ERR2       = [ERR2,mean((abs(d1-d2)./d2).^2) ];
    ERR3   = [ERR3,std((abs(d1-d2)./d2).^2) ];
end
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
10天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
33 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
16天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
10天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
47 17
|
20天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
21天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
43 10
|
23天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
46 10
|
23天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
24天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章