JAVA面试——负载均衡(二)

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: JAVA面试——负载均衡

image.png

①.客户端将请求发往前端的负载均衡器,请求报文源地址是 CIP(客户端 IP),后面统称为 CIP),目

标地址为 VIP(负载均衡器前端地址,后面统称为 VIP)。

②.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将客户端请求报文的目

标地址改为了后端服务器的 RIP 地址并将报文根据算法发送出去

③.报文送到 Real Server 后,由于报文的目标地址是自己,所以会响应该请求,并将响应报文返还

给 LVS

④.然后 lvs 将此报文的源地址修改为本机并发送给客户端。

注意:在 NAT 模式中,Real Server 的网关必须指向 LVS,否则报文无法送达客户端

特点:

1、NAT 技术将请求的报文和响应的报文都需要通过 LB 进行地址改写,因此网站访问量比较大的

时候 LB 负载均衡调度器有比较大的瓶颈,一般要求最多之能 10-20 台节点

2、只需要在 LB 上配置一个公网 IP 地址就可以了

3、每台内部的 realserver 服务器的网关地址必须是调度器 LB 的内网地址。

4、NAT 模式支持对 IP 地址和端口进行转换。即用户请求的端口和真实服务器的端口可以不一致

优点:

集群中的物理服务器可以使用任何支持 TCP/IP 操作系统,只有负载均衡器需要一个合法的 IP 地

址。

缺点:

扩展性有限。当服务器节点(普通 PC 服务器)增长过多时,负载均衡器将成为整个系统的瓶颈,因

为所有的请求包和应答包的流向都经过负载均衡器。当服务器节点过多时,大量的数据包都交汇

在负载均衡器那,速度就会变慢!

image.png

①.客户端将请求发往前端的负载均衡器,请求报文源地址是 CIP,目标地址为 VIP。

②.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将客户端请求报文的源

MAC 地址改为自己 DIP 的 MAC 地址目标 MAC 改为了 RIP 的 MAC 地址,并将此包发送给 RS。

③.RS 发现请求报文中的目的 MAC 是自己,就会将次报文接收下来,处理完请求报文后,将响应

报文通过 lo 接口送给 eth0 网卡直接发送给客户端

注意:需要设置 lo 接口的 VIP 不能响应本地网络内的 arp 请求

总结:

1、通过在调度器 LB 上修改数据包的目的 MAC 地址实现转发。注意源地址仍然是 CIP,目的地址

仍然是 VIP 地址

2、请求的报文经过调度器,而 RS 响应处理后的报文无需经过调度器 LB,因此并发访问量大时使

用效率很高(和 NAT 模式比)

3、因为 DR 模式是通过 MAC 地址改写机制实现转发,因此所有 RS 节点和调度器 LB 只能在一个

局域网里面

4、RS 主机需要绑定 VIP 地址在 LO 接口(掩码 32 位)上,并且需要配置 ARP 抑制。

5、RS 节点的默认网关不需要配置成 LB,而是直接配置为上级路由的网关,能让 RS 直接出网就

可以

6、由于 DR 模式的调度器仅做 MAC 地址的改写,所以调度器 LB 就不能改写目标端口,那么 RS

服务器就得使用和 VIP 相同的端口提供服务

7、直接对外的业务比如 WEB 等,RS 的 IP 最好是使用公网 IP。对外的服务,比如数据库等最好

使用内网 IP。

优点:

和 TUN(隧道模式)一样,负载均衡器也只是分发请求,应答包通过单独的路由方法返回给客户

端。与 VS-TUN 相比,VS-DR 这种实现方式不需要隧道结构,因此可以使用大多数操作系统做为

物理服务器。

DR 模式的效率很高,但是配置稍微复杂一点,因此对于访问量不是特别大的公司可以用

haproxy/nginx取代。日1000-2000W PV或者并发请求1万一下都可以考虑用haproxy/nginx。

缺点:

所有 RS 节点和调度器 LB 只能在一个局域网里面

image.png

①.客户端将请求发往前端的负载均衡器,请求报文源地址是 CIP,目标地址为 VIP。

②.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将在客户端请求报文的

首部再封装一层 IP 报文,将源地址改为 DIP,目标地址改为 RIP,并将此包发送给 RS。

③.RS 收到请求报文后,会首先拆开第一层封装,然后发现里面还有一层 IP 首部的目标地址是自己

lo 接口上的 VIP,所以会处理次请求报文,并将响应报文通过 lo 接口送给 eth0 网卡直接发送给客

户端。

注意:需要设置 lo 接口的 VIP 不能在共网上出现。

总结:

1.TUNNEL 模式必须在所有的 realserver 机器上面绑定 VIP 的 IP 地址

2.TUNNEL 模式的 vip ------>realserver 的包通信通过 TUNNEL 模式,不管是内网和外网都能通

所以不需要 lvs vip 跟 realserver 在同一个网段内。

3.TUNNEL 模式 realserver 会把 packet 直接发给 client 不会给 lvs 了

4.TUNNEL 模式走的隧道模式,所以运维起来比较难,所以一般不用。

优点:

负载均衡器只负责将请求包分发给后端节点服务器,而 RS 将应答包直接发给用户。所以,减少了

负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,就能处理很巨大的请求量,这种方

式,一台负载均衡器能够为很多 RS 进行分发。而且跑在公网上就能进行不同地域的分发。

缺点:

隧道模式的 RS 节点需要合法 IP,这种方式需要所有的服务器支持”IP Tunneling”(IP

Encapsulation)协议,服务器可能只局限在部分 Linux 系统上。

18.1.3.4. LVS FULLNAT 模式

无论是 DR 还是 NAT 模式,不可避免的都有一个问题:LVS 和 RS 必须在同一个 VLAN 下,否则

LVS 无法作为 RS 的网关。这引发的两个问题是:

1、同一个 VLAN 的限制导致运维不方便,跨 VLAN 的 RS 无法接入。

2、LVS 的水平扩展受到制约。当 RS 水平扩容时,总有一天其上的单点 LVS 会成为瓶颈。

Full-NAT 由此而生,解决的是 LVS 和 RS 跨 VLAN 的问题,而跨 VLAN 问题解决后,LVS 和 RS

不再存在 VLAN 上的从属关系,可以做到多个 LVS 对应多个 RS,解决水平扩容的问题。

Full-NAT 相比 NAT 的主要改进是,在 SNAT/DNAT 的基础上,加上另一种转换,转换过程如下:

image.png

在包从 LVS 转到 RS 的过程中,源地址从客户端 IP 被替换成了 LVS 的内网 IP。内网 IP 之间

可以通过多个交换机跨 VLAN 通信。目标地址从 VIP 修改为 RS IP.

2. 当 RS 处理完接受到的包,处理完成后返回时,将目标地址修改为 LVS ip,原地址修改为 RS

IP,最终将这个包返回给 LVS 的内网 IP,这一步也不受限于 VLAN。

3. LVS 收到包后,在 NAT 模式修改源地址的基础上,再把 RS 发来的包中的目标地址从 LVS 内

网 IP 改为客户端的 IP,并将原地址修改为 VIP。

Full-NAT 主要的思想是把网关和其下机器的通信,改为了普通的网络通信,从而解决了跨 VLAN

的问题。采用这种方式,LVS 和 RS 的部署在 VLAN 上将不再有任何限制,大大提高了运维部署的

便利性。

总结

1. FULL NAT 模式不需要 LBIP 和 realserver ip 在同一个网段;

2. full nat 因为要更新 sorce ip 所以性能正常比 nat 模式下降 10%

18.1.4. Keepalive

keepalive 起初是为 LVS 设计的,专门用来监控 lvs 各个服务节点的状态,后来加入了 vrrp 的功

能,因此除了 lvs,也可以作为其他服务(nginx,haproxy)的高可用软件。VRRP 是 virtual

router redundancy protocal(虚拟路由器冗余协议)的缩写。VRRP 的出现就是为了解决静态路

由出现的单点故障,它能够保证网络可以不间断的稳定的运行。所以 keepalive 一方面具有 LVS

cluster node healthcheck 功能,另一方面也具有 LVS director failover

18.1.5. Nginx 反向代理负载均衡

普通的负载均衡软件,如 LVS,其实现的功能只是对请求数据包的转发、传递,从负载均衡下的节

点服务器来看,接收到的请求还是来自访问负载均衡器的客户端的真实用户;而反向代理就不一

样了,反向代理服务器在接收访问用户请求后,会代理用户 重新发起请求代理下的节点服务器

最后把数据返回给客户端用户。在节点服务器看来,访问的节点服务器的客户端用户就是反向代

理服务器,而非真实的网站访问用户。

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
5天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
16 2
|
9天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
15天前
|
存储 缓存 Oracle
Java I/O流面试之道
NIO的出现在于提高IO的速度,它相比传统的输入/输出流速度更快。NIO通过管道Channel和缓冲器Buffer来处理数据,可以把管道当成一个矿藏,缓冲器就是矿藏里的卡车。程序通过管道里的缓冲器进行数据交互,而不直接处理数据。程序要么从缓冲器获取数据,要么输入数据到缓冲器。
Java I/O流面试之道
|
11天前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
35 4
|
12天前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
53 4
|
24天前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
52 5
|
23天前
|
存储 Java
[Java]面试官:你对异常处理了解多少,例如,finally中可以有return吗?
本文介绍了Java中`try...catch...finally`语句的使用细节及返回值问题,并探讨了JDK1.7引入的`try...with...resources`新特性,强调了异常处理机制及资源自动关闭的优势。
18 1
|
1月前
|
Java 程序员
Java 面试高频考点:static 和 final 深度剖析
本文介绍了 Java 中的 `static` 和 `final` 关键字。`static` 修饰的属性和方法属于类而非对象,所有实例共享;`final` 用于变量、方法和类,确保其不可修改或继承。两者结合可用于定义常量。文章通过具体示例详细解析了它们的用法和应用场景。
28 3
|
22天前
|
算法 Java
JAVA 二叉树面试题
JAVA 二叉树面试题
14 0
|
3月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。