生产环境使用二进制安装Prometheus+Grafana监控系统

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 生产环境使用二进制安装Prometheus+Grafana监控系统

安装Prometheus

wget https://github.com/prometheus/prometheus/releases/download/v2.34.0/prometheus-2.34.0.linux-amd64.tar.gz

tar -zxvf prometheus-2.34.0.linux-amd64.tar.gz

mv prometheus-2.34.0.linux-amd64 prometheus

vim prometheus.yml

# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
- localhost:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
- "rules/host_rules.yml"
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: "prometheus"
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ["localhost:9090"]
- job_name: 'agent-web01'
static_configs:
- targets: ['172.31.32.104:9100']
- job_name: 'agent-web02'
static_configs:
- targets: ['172.31.29.223:9100']
- job_name: 'java'
static_configs:
- targets: ['172.31.29.223:8100']
metrics_path: '/actuator/prometheus'

创建规则

mkdir -p /root/prometheus/rules

cat host_rules.yml

groups:
- name: 系统资源告警规则
rules:
- alert: CPU使用率告警
expr: 100 - (avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[1m]) )) * 100 > 80
for: 1m
labels:
user: prometheus
severity: warning
annotations:
description: "服务器: CPU使用超过80%!(当前值: {{ humanize $value }}%)"
- alert: 内存使用率告警
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes+node_memory_Buffers_bytes+node_memory_Cached_bytes )) / node_memory_MemTotal_bytes * 100 > 80
for: 1m
labels:
user: prometheus
severity: warning
annotations:
description: "服务器: 内存使用超过80%!(当前值: {{ humanize $value }}%)"
- alert: 磁盘告警规则
expr: 100 - (node_filesystem_free_bytes{mountpoint="/",fstype=~"ext4|xfs"} / node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100) > 70
for: 1m
labels:
user: prometheus
severity: warning
annotations:
description: "服务器: 磁盘使用超过70%!(当前值: {{ humanize $value }}%)"

启动

nohup ./prometheus &

效果图

安装alertmanager

wget https://github.com/prometheus/alertmanager/releases/download/v0.24.0/alertmanager-0.24.0.linux-amd64.tar.gz

tar -zxvf alertmanager-0.24.0.linux-amd64.tar.gz

mv alertmanager-0.24.0.linux-amd64 alertmanager

vim alertmanager.yml

具体可以去企业微信后台查找相关参数

global:
resolve_timeout: 2m
wechat_api_url: 'https://qyapi.weixin.qq.com/cgi-bin/'
wechat_api_secret: '<你的企业微信secret>'
wechat_api_corp_id: '<你的企业微信id>'
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h
receiver: 'wechat'
receivers:
- name: 'wechat'
wechat_configs:
- send_resolved: true
to_party: '1'
agent_id: '<你的企业微信应用id>'
templates:
- '/alertmanager/*.tmpl'

yaml语法检查

./amtool check-config alertmanager.yml

企业微信报警模板

cat wechat.tmpl

{{ define "wechat.default.message" }}
{{- if gt (len .Alerts.Firing) 0 -}}
{{- range $index, $alert := .Alerts -}}
======== 异常告警 ========
告警名称:{{ $alert.Labels.alertname }}
告警级别:{{ $alert.Labels.severity }}
告警机器:{{ $alert.Labels.instance }} {{ $alert.Labels.device }}
告警详情:{{ $alert.Annotations.summary }}
告警时间:{{ $alert.StartsAt.Format "2006-01-02 15:04:05" }}
========== END ==========
{{- end }}
{{- end }}
{{- if gt (len .Alerts.Resolved) 0 -}}
{{- range $index, $alert := .Alerts -}}
======== 告警恢复 ========
告警名称:{{ $alert.Labels.alertname }}
告警级别:{{ $alert.Labels.severity }}
告警机器:{{ $alert.Labels.instance }}
告警详情:{{ $alert.Annotations.summary }}
告警时间:{{ $alert.StartsAt.Format "2006-01-02 15:04:05" }}
恢复时间:{{ $alert.EndsAt.Format "2006-01-02 15:04:05" }}
========== END ==========
{{- end }}
{{- end }}
{{- end }}

启动

nohup ./alertmanager &

安装Grafana

wget https://dl.grafana.com/oss/release/grafana-8.4.6.linux-amd64.tar.gz

tar -zxvf grafana-8.4.6.linux-amd64.tar.gz

mv grafana-8.4.6.linux-amd64 grafana

配置未更改,走的默认,也可以根据具体情况做相应的配置改动

启动

nohup ./grafana &

配置数据源为Prometheus

因为在本地,所以首选localhost

保存并测试

导入配置

grafana dashboard地址

https://grafana.com/grafana/dashboards

11074 ------1 Node Exporter for Prometheus Dashboard EN 20201010

8919 -------1 Node Exporter Dashboard 22/04/13 ConsulManager自动同步版

1860 -------Node Exporter Full

4701 -------JVM (Micrometer)

参考链接

https://blog.51cto.com/u_15060547/3817600
https://www.cnblogs.com/Devinhao/articles/16180018.html
相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
2月前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
176 20
|
2月前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
233 7
|
2月前
|
Prometheus 监控 前端开发
Grafana 安装配置教程,让你的 Prometheus 监控数据变得更美观
《Grafana安装配置教程,让你的Prometheus监控数据变得更美观》简介: Grafana是一个开源的度量分析与可视化工具,支持多种数据源(如Prometheus),提供丰富的可视化功能和警报机制。本文详细介绍了Grafana的安装、汉化方法及模板使用,帮助用户轻松创建美观、灵活的数据面板,并实现数据的协作与共享。通过Docker镜像、配置文件修改或替换前端页面等方式实现汉化,让用户更便捷地使用中文界面。此外,还提供了导入JSON格式模板的具体步骤,方便快速搭建仪表盘。
112 2
|
3月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
481 3
|
6月前
|
Prometheus 监控 Cloud Native
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
|
2月前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
330 3
|
2月前
|
Prometheus 监控 Cloud Native
无痛入门Prometheus:一个强大的开源监控和告警系统,如何快速安装和使用?
Prometheus 是一个完全开源的系统监控和告警工具包,受 Google 内部 BorgMon 系统启发,自2012年由前 Google 工程师在 SoundCloud 开发以来,已被众多公司采用。它拥有活跃的开发者和用户社区,现为独立开源项目,并于2016年加入云原生计算基金会(CNCF)。Prometheus 的主要特点包括多维数据模型、灵活的查询语言 PromQL、不依赖分布式存储、通过 HTTP 拉取时间序列数据等。其架构简单且功能强大,支持多种图形和仪表盘展示模式。安装和使用 Prometheus 非常简便,可以通过 Docker 快速部署,并与 Grafana 等可
655 2
|
3月前
|
存储 Prometheus 监控
监控堆外第三方监控工具Prometheus
监控堆外第三方监控工具Prometheus
88 3
|
3月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
110 3
|
3月前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。

推荐镜像

更多