m盲信道估计matlab仿真,分别对比非监督式和监督式信道估计,线性信道和非线性信道

简介: m盲信道估计matlab仿真,分别对比非监督式和监督式信道估计,线性信道和非线性信道

1.算法描述

   所谓信道估计,就是从接收数据中将假定的某个信道模型的模型参数估计出来的过程。如果信道是线性的话,那么信道估计就是对系统冲激响应进行估计。需强调的是信道估计是信道对输入信号影响的一种数学表示,而“好”的信道估计则是使得某种估计误差最小化的估计算法。

   在所有通信系统中,信号都会通过一种媒介(信道),当信号通过信道时,信号会发生失真或各种噪声被添加到信号中。正确地解码接收到的信号而不产生太多的错误,就是要从接收信号中去除信道所施加的失真和噪声。要做到这一点,第一步是找出信号经过的信道的特性。这个过程称为“信道估计”。
   无线通信系统的性能很大程度上受到无线信道的影响,如阴影衰落和频率选择性衰落等等,使得发射机和接收机之间的传播路径非常复杂。无线信道并不像有线信道固定并可预见,而是具有很大的随机性,这就对接收机的设计提出了很大的挑战。在OFDM系统的相干检测中需要对信道进行估计,信道估计的精度将直接影响整个系统的性能。为了能在接收端准确的恢复发射端的发送信号,人们采用各种措施来抵抗多径效应对传输信号的影响,信道估计技术的实现需要知道无线信道的信息,如信道的阶数、多普勒频移和多径时延或者信道的冲激响应等参数。因此,信道参数估计是实现无线通信系统的一项关键技术。能否获得详细的信道信息,从而在接收端正确地解调出发射信号,是衡量一个无线通信系统性能的重要指标。因此,对于信道参数估计算法的研究是一项有重要意义的工作。

    所谓信道估计,就是从接收数据中将假定的某个信道模型的模型参数出来的过程。如果信道是线性的话,那么信道估计就是对系统冲激响应进行估计。需强调的是信道估计是信道对输入信号影响的一种数学表示,而“好”的信道估计则是使得某种估计误差最小化的估计算法。

    盲估计是指无须在发端传送已知的导频序列仅依据接收到的信号进行的空时信道估计。利用调制信号本身固有的、与具体承载信息比特无关的一些特征,或是采用判决反馈的方法来进行信道估计的方法。又称无先验知识估计。

监督式学习

    我们首先来介绍我们的大儿子--监督式学习。它的个性单纯、踏实,大部分的事情我们必须先跟它解释够多遍,它才有足够的判断力做出相应的决定。

   举例来说,我们今天带着它来到公园,为了让他了解什么是植物,你指向榕树、矮树林、灌木丛与草地,看!这些都是植物,接着指着天空、汽车和房子说这些不是植物,带着它认识大部分的物件后,大儿子最终找到了规律(绿色、有根或叶),学会了如何判断什么是植物。

非监督式学习

   接着我们来介绍我们的第二个孩子--非监督式学习。它喜欢将看到的物件依照结构分门别类、划分成不同群组,当我们将一箱动物玩具放在它面前时,它很快就能够从中分出不同的小圈子,往往让人感到惊讶的是,我们事先并没有告诉它每只动物是属于哪种类别,它却可以透过观察将其分成有翅膀能够飞的、能在水中生活的或只能在路上爬的动物,有些甚至有它独特的分类方法是我们没有预想到的,这就是非监督式学习。我们不必透过监督,就可以从玩具中透过观察解析结构将数据做好分类。

最后我们对本文做个简单的总结:

监督式学习:数据已有标记,运用已标记数据来做训练。
非监督式学习:数据没有标记,从中找出拥有相同特征的数据群。
2.仿真效果预览
matlab2022a仿真结果如下:

非监督式信道估计——线性信道和非线性信道

盲信道估计在线性信道中的估计误差收敛曲线如下所示:

image.png

盲信道估计在非线性信道中的估计误差收敛曲线如下所示:

image.png

监督式信道估计——线性信道和非线性信道

监督式信道估计在线性信道中的估计误差收敛曲线如下所示:

image.png

监督式信道估计在非线性信道中的估计误差收敛曲线如下所示:

image.png

3.MATLAB核心程序

    %开始监督循环
    while J > 1e-5%如果J大于某个误差,就继续循环
        E2            = E1; 
        E1            = 0; 
        P             = P+1; 
        for m=L+1:1:M 
            sum=0; 
            for n=m-1:-1:m-L 
                sum=sum+y(n)*w(m-n); %计算权值结果
            end 
            e       = x(m-d)-sum; %计算误差
            u       = y(m-1:-1:m-L)'; 
            k       = q*u/(a+u'*q*u); 
            q       =(1/a)*(q-k*u'*q); 
            w       = w+k*e; %权值的更新
            E1      = E1+e*e; 
            ee(m-L) = ee(m-L)+e.^2; %误差更新
            sb(m)   = sum;
        end 
        E1 = E1/(M-L);
        J  = abs(E1-E2);%更新J
    end
end 
ee=ee/SIM; 
05_025_m
SNRdB = 40; %信噪比
Lf    = 40; %延迟参数
Lh    = 5;%延迟参数
Dy    = round((Lf+Lh)/2);%延迟参数
%信道参数
h     = [0.407,0.815]; %信道参数
%产生随机的测试数据发送
M     = 4; 
M     = M/2;
si    = floor(2*M*rand(1,N))-M+4;
%调制
s     = exp(sqrt(-1)*si*pi/M);
%通过信道
x     = filter(h,1,s); 
%归一
x     = x/max(x); 
%产生随机的噪声
vn    = randn(1,N)+sqrt(-1)*randn(1,N);
vn    = vn*(10^(-SNRdB/20))/sqrt(2);
%加入噪声
x     = x+vn;
%一些中间临时变量的定义
Lp    = N-Lf;
X     = zeros(Lf+1,1);
e     = zeros(1,Lp);
w     = zeros(Lf+1,1);
w(Dy) = 1;
R2    = 2;
%学习参数
mu    = 0.001;
%忙均衡
for i=1:Lp
    X=x(i+Lf:-1:i).';
    yk=w'*X; 
    e(i)=abs(yk)^2-R2;
    w=w-mu*2*e(i)*X*(yk)';
end
%根据忙估计得到的权值进行忙均衡
for i=1:Lp
    sb(i)=w'*x(i+Lf:-1:i).';
end;
相关文章
|
2天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
29 20
|
2天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
26 12
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
2天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
1天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
245 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
146 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
115 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章