基于LS最小二乘法的OFDM信道估计误码率matlab仿真

简介: 基于LS最小二乘法的OFDM信道估计误码率matlab仿真

1.算法描述
ofdm基本结构如下所示:

image.png

    信道估计是使用接收信号表现出来的各种状态来对信道的特性进行估计的过程。信道估计是信道对输入信号影响的一种数学表示。信道估计可以定义为描述物理信道对输入信号的影响而进行定性研究的过程,是信道对输入信号影响的一种数学表示。如果信道是线性的,那么信道估计就是对系统冲激响应进行估计。信道估计的目标就是使某种估计误差最小化,同时还要尽量降低算法的复杂度,并具有可实现性。为了在接收端能够准确地恢复发射信号,需要对信道的冲激响应进行估计,这就是信道估计。
   OFDM系统常常使用插入导频的方法来进行信道估计。我们都知道OFDM系统是在同一个时刻同时发送多个不同频率的子载波,一次性发送若干个子载波算是发送了一个OFDM符号,然后再隔一定的时间再发送下一个OFDM符号。根据导频插入的不同方式我们可以分为块状导频和梳状导频。 

LS:Least Square

     该算法计算简单、复杂度低,不需要信道的任何先验统计特性。该方法导频处信道频域响应(CFR)通过LS算法估计得到,数据符号处CFR通过插值方法获得。然而,由于LS估计方法不能消除导频处噪声的影响,并且插值类信道估计方法不能有效消除由于多径引起的频域选择兴衰落信道的影响,导致数据处CFR获取不准确,因此LS算法的估计性能较差。

假设发射信号是X(i),信道传输函数是H(i),接收端接收到的信号是Y(i),那么就有这个等式Y(i)=X(i)H(i)。

   信道估计中的LS算法是最基本且常用的算法,用最朴实的话说就是忽略噪声,直接除。其公式表示为H(i)=Y(i)/X(i)。频域接收信号导频位置Y,本地已知导频X。两者简单相除,就可以得到导频位置的信道估计值H(i)。
   在硬件实现时,除了在均衡时可以考虑用除法器,其他位置(包括此处的LS算法)都不要使用除法器,除法器占用的资源太多,将除法表示为乘法即可避免,而大部分的乘法可以用移位相加来实现,这样可以大大降低复杂度。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png

3.MATLAB核心程序

Error_ber=[];%误比特率
Error_ber1=[];
Error_ber2=[];%误比特率
Error_ber3=[];
%Error_ser=[];%误符号率
for snr_db=0:snr:N_snr
 
    code_power=0;
    code_power=[norm(Tx_data)]^2/(length(Tx_data));%信号的符号功率
    %bit_power=var(Tx_data);
    bit_power=code_power/bits_per_symbol;%比特功率 
    noise_power=10*log10((bit_power/(10^(snr_db/10))));%噪声功率
    noise=wgn(1,length(Tx_data),noise_power,'complex');%产生GAUSS白噪声信号
    
    Y7=Tx_data+noise;
 
%-------------------------------------------------------
  %串并变换
   Y6=reshape(Y7,IFFT_bin_length+GI,symbols_per_carrier).';
   
  %去保护间隔
    for k=1:symbols_per_carrier;
       for i=1:IFFT_bin_length;
           Y5(k,i)=Y6(k,i+GI);
       end
    end
    %FFT,傅立叶变换
     Y4=fft(Y5,IFFT_bin_length,2);
     Y3=Y4(:,carriers);
 %-------------------------------------------------------------   
 %LS信道估计,%信道估计准则:最小均方误差(MMSE)最大似然估计(MLE) 最小平方(LS)
  H=[];
  Y2=Y3(:,signal);
  Rx_training_symbols=Y3(:,pilot);
  Rx_training_symbols0=reshape(Rx_training_symbols,symbols_per_carrier*Np,1);
  
  training_symbol0=reshape(training_symbols,1,symbols_per_carrier*Np);
  training_symbol1=diag(training_symbol0);
  %disp(training_symbols)
  training_symbol2=inv(training_symbol1);
  Hls=training_symbol2*Rx_training_symbols0;
  Hls1=reshape(Hls,symbols_per_carrier,Np);
  HLs=[];
  HLs1=[];
相关文章
|
3天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
3天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
2天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
12 0
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
169 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
120 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
86 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)