基于LS最小二乘法的OFDM信道估计误码率matlab仿真

简介: 基于LS最小二乘法的OFDM信道估计误码率matlab仿真

1.算法描述
ofdm基本结构如下所示:

image.png

    信道估计是使用接收信号表现出来的各种状态来对信道的特性进行估计的过程。信道估计是信道对输入信号影响的一种数学表示。信道估计可以定义为描述物理信道对输入信号的影响而进行定性研究的过程,是信道对输入信号影响的一种数学表示。如果信道是线性的,那么信道估计就是对系统冲激响应进行估计。信道估计的目标就是使某种估计误差最小化,同时还要尽量降低算法的复杂度,并具有可实现性。为了在接收端能够准确地恢复发射信号,需要对信道的冲激响应进行估计,这就是信道估计。
   OFDM系统常常使用插入导频的方法来进行信道估计。我们都知道OFDM系统是在同一个时刻同时发送多个不同频率的子载波,一次性发送若干个子载波算是发送了一个OFDM符号,然后再隔一定的时间再发送下一个OFDM符号。根据导频插入的不同方式我们可以分为块状导频和梳状导频。 

LS:Least Square

     该算法计算简单、复杂度低,不需要信道的任何先验统计特性。该方法导频处信道频域响应(CFR)通过LS算法估计得到,数据符号处CFR通过插值方法获得。然而,由于LS估计方法不能消除导频处噪声的影响,并且插值类信道估计方法不能有效消除由于多径引起的频域选择兴衰落信道的影响,导致数据处CFR获取不准确,因此LS算法的估计性能较差。

假设发射信号是X(i),信道传输函数是H(i),接收端接收到的信号是Y(i),那么就有这个等式Y(i)=X(i)H(i)。

   信道估计中的LS算法是最基本且常用的算法,用最朴实的话说就是忽略噪声,直接除。其公式表示为H(i)=Y(i)/X(i)。频域接收信号导频位置Y,本地已知导频X。两者简单相除,就可以得到导频位置的信道估计值H(i)。
   在硬件实现时,除了在均衡时可以考虑用除法器,其他位置(包括此处的LS算法)都不要使用除法器,除法器占用的资源太多,将除法表示为乘法即可避免,而大部分的乘法可以用移位相加来实现,这样可以大大降低复杂度。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png

3.MATLAB核心程序

Error_ber=[];%误比特率
Error_ber1=[];
Error_ber2=[];%误比特率
Error_ber3=[];
%Error_ser=[];%误符号率
for snr_db=0:snr:N_snr
 
    code_power=0;
    code_power=[norm(Tx_data)]^2/(length(Tx_data));%信号的符号功率
    %bit_power=var(Tx_data);
    bit_power=code_power/bits_per_symbol;%比特功率 
    noise_power=10*log10((bit_power/(10^(snr_db/10))));%噪声功率
    noise=wgn(1,length(Tx_data),noise_power,'complex');%产生GAUSS白噪声信号
    
    Y7=Tx_data+noise;
 
%-------------------------------------------------------
  %串并变换
   Y6=reshape(Y7,IFFT_bin_length+GI,symbols_per_carrier).';
   
  %去保护间隔
    for k=1:symbols_per_carrier;
       for i=1:IFFT_bin_length;
           Y5(k,i)=Y6(k,i+GI);
       end
    end
    %FFT,傅立叶变换
     Y4=fft(Y5,IFFT_bin_length,2);
     Y3=Y4(:,carriers);
 %-------------------------------------------------------------   
 %LS信道估计,%信道估计准则:最小均方误差(MMSE)最大似然估计(MLE) 最小平方(LS)
  H=[];
  Y2=Y3(:,signal);
  Rx_training_symbols=Y3(:,pilot);
  Rx_training_symbols0=reshape(Rx_training_symbols,symbols_per_carrier*Np,1);
  
  training_symbol0=reshape(training_symbols,1,symbols_per_carrier*Np);
  training_symbol1=diag(training_symbol0);
  %disp(training_symbols)
  training_symbol2=inv(training_symbol1);
  Hls=training_symbol2*Rx_training_symbols0;
  Hls1=reshape(Hls,symbols_per_carrier,Np);
  HLs=[];
  HLs1=[];
相关文章
|
2天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
3天前
|
算法 数据安全/隐私保护
泵浦光与斯托克斯光相遇耦合效应的matlab模拟与仿真
本程序使用MATLAB2022A模拟泵浦光与斯托克斯光在非线性光学材料中的耦合效应,基于拉曼散射原理。通过非线性薛定谔方程描述两者相互作用,实现能量转换与放大。核心代码展示了时间与距离上的光强变化,最终生成动态图像展示耦合过程。完整程序无水印,运行结果如附图所示。该仿真有助于理解非线性光学现象及其应用。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
4天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
6天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
7天前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于遗传优化SVM的电机参数预测matlab仿真
本项目基于遗传优化支持向量机预测电机性能参数,输入电机结构参数(铁心高度、厚度、绕组匝数、窗口宽度、导线截面积),输出体积及三轴加速度。使用Matlab2022a开发,含详细注释代码与操作视频。算法通过大量样本数据学习结构与性能间的非线性关系,经遗传算法优化SVM参数,提高预测精度和泛化能力。数据预处理包括清洗与归一化,确保模型训练高效稳定。
|
8天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。