面试了个阿里P7大佬,他让我见识到什么才是“精通高并发与调优”

简介: 按照公司项目招聘的要求,我通常都会问一些高并发需要掌握的知识和实战路程,主要考察一下有没有做过高并发项目,有没有做过性能调优,清不清楚其中的细节,每个方案可能带来的副作用;基础扎实不扎实,比如:数据结构是否合理,算法是否高效,有没有从最根本的IO和计算两个维度去做细节优化;

始末

按照公司项目招聘的要求,我通常都会问一些高并发需要掌握的知识和实战路程,主要考察一下有没有做过高并发项目,有没有做过性能调优,清不清楚其中的细节,每个方案可能带来的副作用;基础扎实不扎实,比如:数据结构是否合理,算法是否高效,有没有从最根本的IO和计算两个维度去做细节优化;

这次面试了个阿里P7的大佬,也是按部就班地问这些问题,没想到他还可以举一反三,不仅仅回答了问题,还介绍了他用过的高并发设计方案还有压测、流量控制等等等。

好吧,我承认我被吊打了。

但是我严重怀疑他是做了准备而来的,不然没有什么人可以记得这么清楚有条理,果不其然,在他入职之后说出了实情;

在他们阿里团队内部有一份由P9编写的《亿级并发设计》工作手册,目的就是让所有的成员都不脱节,使团队配合更加的紧密;

亿级并发设计目录内容一览

接下来就给大家分享一下阿里P9总结的《亿级并发设计手册》,学完你也可以在简历上写精通高并发设计与调优,同时也希望各位可以多吊打一下其他面试官;

由于文章篇幅原因,下面就以截图方式展示,完整PDF可免费分享;

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

网络异常,图片无法展示
|

总结

内容如上图所示,每章都会举相对应的案例,用案例+代码+配图的方式详细剖析高并发系统设计的细节。如果你还不敢在简历上写精通,那么这份笔记你或许该好好地研究一下;

可以点击此处来获取就可以了!

相关文章
|
16天前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
20天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
80 22
|
28天前
|
NoSQL 关系型数据库 MySQL
招行面试:高并发写,为什么不推荐关系数据?
资深架构师尼恩针对高并发场景下为何不推荐使用关系数据库进行数据写入进行了深入剖析。文章详细解释了关系数据库(如MySQL)在高并发写入时的性能瓶颈,包括存储机制和事务特性带来的开销,并对比了NoSQL数据库的优势。通过具体案例和理论分析,尼恩为读者提供了系统化的解答,帮助面试者更好地应对类似问题,提升技术实力。此外,尼恩还分享了多个高并发系统的解决方案及优化技巧,助力开发者在面试中脱颖而出。 文章链接:[原文链接](https://mp.weixin.qq.com/s/PKsa-7eZqXDg3tpgJKCAAw) 更多技术资料和面试宝典可关注【技术自由圈】获取。
|
2月前
|
存储 NoSQL 架构师
阿里面试:聊聊 CAP 定理?哪些中间件是AP?为什么?
本文深入探讨了分布式系统中的“不可能三角”——CAP定理,即一致性(C)、可用性(A)和分区容错性(P)三者无法兼得。通过实例分析了不同场景下如何权衡CAP,并介绍了几种典型分布式中间件的CAP策略,强调了理解CAP定理对于架构设计的重要性。
96 4
|
3月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
3月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
9月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
8月前
|
缓存 NoSQL Java
Java高并发实战:利用线程池和Redis实现高效数据入库
Java高并发实战:利用线程池和Redis实现高效数据入库
574 0
|
6月前
|
监控 算法 Java
企业应用面临高并发等挑战,优化Java后台系统性能至关重要
随着互联网技术的发展,企业应用面临高并发等挑战,优化Java后台系统性能至关重要。本文提供三大技巧:1)优化JVM,如选用合适版本(如OpenJDK 11)、调整参数(如使用G1垃圾收集器)及监控性能;2)优化代码与算法,减少对象创建、合理使用集合及采用高效算法(如快速排序);3)数据库优化,包括索引、查询及分页策略改进,全面提升系统效能。
72 0
|
8月前
|
存储 NoSQL Java
探索Java分布式锁:在高并发环境下的同步访问实现与优化
【6月更文挑战第30天】Java分布式锁在高并发下确保数据一致性,通过Redis的SETNX、ZooKeeper的临时节点、数据库操作等方式实现。优化策略包括锁超时重试、续期、公平性及性能提升,关键在于平衡同步与效率,适应大规模分布式系统的需求。
221 1

热门文章

最新文章