基于meanshift算法的目标聚类和目标跟踪matlab仿真

简介: 基于meanshift算法的目标聚类和目标跟踪matlab仿真

1.算法描述

   meanshift算法其实通过名字就可以看到该算法的核心,mean(均值),shift(偏移),简单的说,也就是有一个点 ,它的周围有很多个点  我们计算点  移动到每个点  所需要的偏移量之和,求平均,就得到平均偏移量,(该偏移量的方向是周围点分布密集的方向)该偏移量是包含大小和方向的。然后点  就往平均偏移量方向移动,再以此为新的起点不断迭代直到满足一定条件结束。

   中心点就是我们上面所说的  周围的小红点就是  黄色的箭头就是我们求解得到的平均偏移向量。那么图中“大圆圈”是什么东西呢?我们上面所说的周围的点  周围是个什么概念?总的有个东西来限制一下吧。那个“圆圈”就是我们的限制条件,或者说在图像处理中,就是我们搜索迭代时的窗口大小。

   步骤1、首先设定起始点  ,我们说了,是球,所以有半径  , 所有在球内的点就是  , 黑色箭头就是我们计算出来的向量  , 将所有的向量  进行求和计算平均就得到我们的meanshift 向量,也就是图中黄色的向量。 

    接着,再以meanshift向量的重点为圆心,再做一个高维的球,如下图所示,重复上面的步骤,最终就可以收敛到点的分布中密度最大的地方

算法步骤:

       1)在未被标记的数据点中随机选择一个点作为起始中心点center;

       2)找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C,同时在该聚类中记录数据点出现的次数加1;

       3)以center为中心点,计算从center开始到集合M中每个元素的向量,将这些向量相加,得到向量shift;

       4)center=center+shift,即center沿着shift方向移动,移动距离为||shift||;

       5)重复步骤2,3,4,直到shift很小,记得此时的center。注意,这个迭代过程中遇到的点都应该归类到簇C;

       6)如果收敛时当前簇C的center与其它已经存在的簇C2中心的距离小于阈值,那么把C2与C合并,数据点出现次数也对应合并。否则把C作为新的聚类;

       7)重复1,2,3,4,5直到所有点都被标记为已访问;

       8)分类:根据每个类,对每个点的访问频率,取访问频率最大的那个类,作为当前点集的所属类。

image.png

    对式(33)右边的第二项,我们可以利用Mean Shift算法进行最优化.在Comaniciu等人的文章中,他们只用平均每帧图像只用4.19次Mean Shift迭代就可以收敛,他们的结果很显示在600MHz的PC机上,他们的程序可以每秒处理30帧352240象素的图像.下图显示了各帧需要的Mean Shift迭代次数.

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png
image.png

3.MATLAB核心程序

cmin = round(cmin);
cmax = round(cmax);
rmin = round(rmin);
rmax = round(rmax);
wsize(1) = abs(rmax - rmin);
wsize(2) = abs(cmax - cmin);
 
hsvimage = rgb2hsv(Image1);
% pull out the h
huenorm = hsvimage(:,:,1);
 
hue = huenorm*255;
 
hue=uint8(hue);
 
histogram = zeros(256);
 
for i=rmin:rmax
    for j=cmin:cmax
        index = uint8(hue(i,j)+1);   
 
        histogram(index) = histogram(index) + 1;
    end
end
 
相关文章
|
6天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
7天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
19天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
153 80
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
11天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
16天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。