m基于GRNN广义回归神经网络的飞机发动机剩余寿命预测matlab仿真,训练集采用C-MAPSS数据集

简介: m基于GRNN广义回归神经网络的飞机发动机剩余寿命预测matlab仿真,训练集采用C-MAPSS数据集

1.算法描述

   GRNN建立在非参数核回归基础上,以样本数据为后验条件,通过执行诸如Parzen非参数估计,从观测样本里求得自变量和因变量之间的联结概率密度函数之后,直接计算出因变量对自变量的回归值。GRNN不需要设定模型的形式,但是其隐回归单元的核函数中有光滑因子,它们的取对网络有很大影响,需优化取值。GRNNb论具有良好的函数逼近性能,而且因为其网络训练更为方便,因此,GRNN在信号过程、结构分析、控制决策系统、金融领域、生物工程领域等各个科学和工程领域得到了广泛的应用。

    广义回归神经网络的理论基础是非线性核回归分析,非独立变量y相对于独立变量x的回归分析实际上是计算具有最大概率值的y。设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

image.png

对于未知的概率密度函数f (x, y),可由x和y的观测样本经非参数估计得:
image.png
image.png

   GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结构如图所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。 

image.png

   输入层的神经元数目与学习样本中输入向量的维数m相等,每个神经元都是一个简单的分布单元,这些神经元直接将输入变量传递到隐含层中。 

   C-MAPSS Data Set里面有一个read me 的 txt文件。training 是给建模用的。 test 和 rul 是给 建模后验证用的。 每个 test 里面都有100组情况  对应的 rul里面有 100个数值。 rul 里面的数值就是真实值。 建模之后 跑test的数据 应该 给出接近rul的数值

1.1数据分析

1) unit number

2) time, in cycles

3) operational setting 1

4) operational setting 2

5) operational setting 3

6) sensor measurement 1

7) sensor measurement 2

...

26) sensor measurement 26

数据第一列是机器的编号,第二列是每个机器的运行的时间序列标号,3~5是对应的设置,6~最后一列是传感器的测量值。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png

3.MATLAB核心程序

%Step1
STR        = 1;%选择数据标号1,2,3,4
Name_Train = ['data\00',num2str(STR),'\','train_FD00',num2str(STR),'.txt'];
Name_RUL   = ['data\00',num2str(STR),'\','RUL_FD00',num2str(STR),'.txt'];
%读取数据
Data_Train = load(Name_Train);
Data_RUL   = load(Name_RUL); 
 
%%
%Step2
%计算每个机器的时间
%得到机器编号
Mach_No = unique(Data_Train(:,1));
for i = 1:length(Mach_No)
    Index        = find(Data_Train(:,1) == i);  
    %平滑预处理
    used         = [7,8,9,12,13,14,16,17,18];
    tmps         = Data_Train(Index,used);
    [R,C]        = size(tmps);
    dout         = zeros(R,C);
    for mm = 1:C
        dout(:,mm) = [func_smooth(tmps(:,mm),32)]'; 
    end
    Mach_Info{i} = dout; 
    RUL_Train(i) = length(Index);  
end
figure;    
subplot(121);
plot(Data_Train(find(Data_Train(:,1) == 1),7));
title('信号预处理之前');
subplot(122);
plot(Mach_Info{1}(:,1));
title('信号预处理之后');
%%
%Step3
%特征提取
P = [];
T = [];
for i = 1:length(Mach_No)
    tmps = Mach_Info{i};
    %提取当前矩阵的特征
    Y  = func_pca(tmps',1);
    Y  = Y';
    for j = 1:length(Y)
        P = [P;Mach_Info{i}(j,1:6),Y(j,:)];
        T = [T;(RUL_Train(i)-j)];
    end
end
%%
%Step4
%使用神经网络进行训练
%%归一化处理
%对pt矩阵进行归一化处理                
%GRNN网络训练
net = newgrnn(P',T',5.1);
save train_net.mat net
相关文章
|
5天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
47 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
1天前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
9 1
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
26天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
50 18
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。

热门文章

最新文章