AI智能电话销售机器人源码搭建部署系统电话机器人源码

简介: AI智能电话销售机器人源码搭建部署系统电话机器人源码

一般智能语音助理或语音机器人工作原理大致如下:

第一阶段:
语音到文本的过程。信号源→设备(捕获音频输入)→增强音频输入→检测语音→转换为其他形式(如文本)

第二阶段:
响应过程。处理文本(如用NLP处理文本,识别意图)→操作响应。

在检测语音过程中,就包括分辨是否为语音信号,该过程会通过指定的频率对模拟信号进行采样,将模拟声波转换为数字数据。这一过程很重要,是否成功地识别语音。如果生成数字数据都是错误的,那么后期的处理响应那肯定是错的。这也是影响智能语音助理或语音机器人识别率的重要因素。

在这个过程,用于语音处理的技术是语音活性检测 (Voice activity detection,VAD),目的是检测语音信号是否存在。 VAD技术主要用于语音编码和语音识别。它可以简化语音处理,也可用于在音频会话期间去除非语音片段:可以在IP电话应用中避免对静音数据包的编码和传输,节省计算时间和带宽。

文本将与大家分享VAD技术,首先讲两个概念:
信噪比(缩写为SNR或S / N)是科学和工程中使用的一种度量,它将所需信号的电平与背景噪声电平进行比较。
SNR定义为信号功率与噪声功率之比,通常以分贝表示。比率高于1:1(大于0 dB)表示信号多于噪声。
窗口,研究信号源,我们将其分成滑动窗口或仅窗口。

编辑

能量检测器

能量检测器对于高SNR信号是有效的,但是当SNR下降直到它在1以下变得无效时失去效率。它也不能将语音与诸如冲击噪声(将笔放在桌子上),打字,空调或任何噪声之类的噪声区分开来。比人声更响亮或更响亮。

波形和频谱分析

在波形和频谱分析中,语音活动检测利用语音的已知特征。在该方法中应用VAD比基于能量的解决方案更加计算密集,但是能够更好地检测非平稳噪声和低SNR场景中的噪声。

对于浊音音素,声带的振动产生谐波丰富的声音,具有50到250 Hz之间的明显音调。所有元音,但也有一些辅音,表现出这种谐波结构,因此是语音的特征。代表谐波结构的特征是语音的可靠指标。然而,单独使用基于谐度或基于音调的特征不能预期无声语音部分(例如一些摩擦音)被检测到。此外,音乐或其他谐波噪声分量可能被误解为语音。

总的来说,对信号的倒谱的分析可以揭示信号能量的来源。

同样的,基于该共振峰结构,也是语音识别系统的重要特征。人类声道中的可变腔允许扬声器形成不同的音素。强调谐振(或共振峰)频率,导致频谱包络的特征形状。

平滑很重要,在一个对话中,一个人只有50%的时间在说话,并且存在大量非活动帧。诸如[p] [t] [k] [b]之类的音是静音,并且静音部分可能不会被算法识别为语音,这将影响自动语音识别系统的性能。

解决方案如下:

要被视为语音,必须至少有3个连续的窗口标记语音(192ms)。它可以防止短暂的噪音被视为语音。

要被认为是沉默,必须至少连续3个窗口标记为静音。它可以防止过多的语音切入影响语音节奏。

如果窗口被认为是语音,则前3个窗口和3个窗口被认为是语音。它可以防止在句子开头和结尾丢失信息。

基于统计分析

MFCC,FBANK,PLP是最常用的语音识别功能。有数学运算的连接,旨在通过保持最相关的数据来减少和压缩信息的数量。

在“信号源→设备(捕获音频输入)→增强音频输入→检测语音”过程中,语音成功采样识别为数字数据,是后期语言处理的前提,在检测中文面临更大挑战,断句、语气、语调等因素直接影响识别率。

因此,语音活性检测会影响电话机器人的识别率。有兴趣的一起交流沟通
4a4960da2f7799c7359640d15008661.jpghttps://www.aliyun.com/activity/new/index?userCode=f48yvihf

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
1天前
|
传感器 人工智能 监控
AI与物联网的融合:开启智能化未来的新篇章
AI与物联网的融合:开启智能化未来的新篇章
123 96
|
4天前
|
人工智能 前端开发 Unix
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
|
2天前
|
机器学习/深度学习 人工智能 资源调度
基于AI的运维资源调度:效率与智能的双重提升
基于AI的运维资源调度:效率与智能的双重提升
31 16
基于AI的运维资源调度:效率与智能的双重提升
|
4天前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
PeterCat:一键创建开源项目 AI 问答机器人,自动抓取 GitHub 仓库信息、文档和 issue 等构建知识库
PeterCat 是一款开源的智能答疑机器人,能够自动抓取 GitHub 上的文档和 issue 构建知识库,提供对话式答疑服务,帮助开发者和社区维护者高效解决技术问题。
41 7
PeterCat:一键创建开源项目 AI 问答机器人,自动抓取 GitHub 仓库信息、文档和 issue 等构建知识库
|
8天前
|
存储 人工智能 数据管理
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在内容创作中的创新:开启智能创意的新时代
AI在内容创作中的创新:开启智能创意的新时代
55 14
|
1天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
1天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
24 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
8天前
|
存储 SQL 人工智能
Lindorm:AI和具身智能时代的海量多模数据服务
本次分享由阿里云资深技术专家沈春辉介绍Lindorm数据库在AI和具身智能时代的应用。Lindorm定位于提供海量多模数据服务,融合了结构化、半结构化及非结构化数据的处理能力,支持时序、地理位置、文本、向量等多种数据类型。其核心特点包括多模一体化、云原生分布式架构、异步攒批写入、冷热数据分离、深度压缩优化、丰富索引和Serverless计算等,旨在提升研发效率并降低成本。Lindorm已广泛应用于车联网领域,覆盖60%国内头部车企,支撑近百PB数据规模,带来90%业务成本下降。