AidLux智慧社区AI实战训练总结

简介: AidLux智慧社区AI实战训练总结

AidLux智慧社区AI实战训练

一、 主要目标
围绕智慧社区基本定义、场景需求理解、算法设计实现、边缘设备部署等核心要点,利用边缘设备AidLux,带大家完成智慧社区里面的两个典型场景:高空抛物和车牌识别的算法开发,以及在边缘设备上的部署。
二、 主要内容
1) 智慧社区的各类场景算法的划分;
2) 智慧社区项目落地方式;
3) 边缘设备在智慧社区中的应用场景;
4) 高空抛物场景算法设计及实现;
5) 车牌数据集整理及训练;
6) 车牌识别算法部署及验证。
三、 小作业
尝试调试不同的参数,来看看对算法结果的影响,如背景建模方法,这里采用的是knn方法,也可以试试高斯混合建模;还有sort追踪中的max_age, min_hits等参数,大家尝试完后,最好准备至少两个不同超参对比视频,并能检测到高空抛物行为(视频中能追踪到高空抛物物体)。
Knn背景建模算法结合了无参数概率密度估计+KNN分类思想。首先是无参数概率密度估计,是指在不方便建立样本分布模型的情况下,与之相反的就是有参数概率密度估计;而 MOG2就是明确的建立了混合高斯模型,然后根据一定的优化目标求取模型参数,估计其概率密度分布。
1) 高斯混合建模MOG2实现
图片1.png

2) Sort追踪算法参数调整实现
图片2.png

3) 演示视频1
B站:
https://www.bilibili.com/video/BV1Aj411u73Z/?vd_source=fbbf0424880919cc7d918ef607fef2e6
4) 演示视频2
B站:
https://www.bilibili.com/video/BV128411F7To/?vd_source=fbbf0424880919cc7d918ef607fef2e6
四、 大作业
尝试将其改成视频读取的方式,并拍个路边车牌的视频,或者找个车辆行驶的视频,使用我们的pipeline实现视频的车牌识别功能(注,同时记得修复中文显示)。
1) 增加PIL图像中文显示调用方式
图片3.png

2) 修改函数调用方式
图片4.png

3) 增加视频调用方式
图片5.png
图片6.png
图片7.png
图片8.png

4) 演示视频1(中文字符识别)
B站:
https://www.bilibili.com/video/BV1WM41147Wf/?vd_source=fbbf0424880919cc7d918ef607fef2e6
5) 演示视频2 (视频读取方式显示)
B站:
https://www.bilibili.com/video/BV1S54y1u7uh/?vd_source=fbbf0424880919cc7d918ef607fef2e6
五、 心得体会
通过AidLux智慧社区AI实战训练课程的学习,掌握了智慧社区基本定义、面向应用场景的算法设计及实现、移动端部署测试等等,印象深刻的是自己查阅背景建模、目标识别等相关基础理论,动手实践了相关代码实现及参数调整,课程内容安排比较合理,通过作业实践了相关技巧,通过查阅网站资源掌握了opencv图片显示中文字符方法,收获颇丰。
感谢大刀老师、助教老师精心课程准备,谢谢!

相关文章
|
10天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
3月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
129 6
|
28天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
358 34
|
26天前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
74 2
【AI系统】感知量化训练 QAT
|
26天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
44 1
【AI系统】训练后量化与部署
|
4天前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
18 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
24天前
|
人工智能 自然语言处理 算法
AI时代的企业内训全景图:从案例到实战
作为一名扎根在HR培训领域多年的“老兵”,我越来越清晰地感受到,企业内训的本质其实是为企业持续“造血”。无论是基础岗的新人培训、技能岗的操作规范培训,还是面向技术中坚力量的高阶技术研讨,抑或是管理层的战略思维提升课,内训的价值都是在帮助企业内部提升能力水平,进而提高组织生产力,减少对外部资源的依赖。更为重要的是,在当前AI、大模型、Embodied Intelligence等新兴技术快速迭代的背景下,企业必须不断为人才升级赋能,才能在市场竞争中保持领先。
|
3月前
|
存储 人工智能 分布式计算
Parquet 文件格式详解与实战 | AI应用开发
Parquet 是一种列式存储文件格式,专为大规模数据处理设计,广泛应用于 Hadoop 生态系统及其他大数据平台。本文介绍 Parquet 的特点和作用,并演示如何在 Python 中使用 Pandas 库生成和读取 Parquet 文件,包括环境准备、生成和读取文件的具体步骤。【10月更文挑战第13天】
506 60
|
25天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
60 8
|
9天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。