python机器学习从入门到高级:超参数调整(含详细代码)

简介: python机器学习从入门到高级:超参数调整(含详细代码)

Python机器学习之超参数调整

  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

在我们选择好一个模型后,接下来要做的是如何提高模型的精度。因此需要进行超参数调整,一种方法是手动调整超参数,直到找到超参数值的最佳组合。这将是一个非常复杂的工作,我们可以通过sklearn中的一些方法来进行搜索。我们所需要做的就是告诉它我们想用哪些超参数进行实验,以及尝试哪些值,然后它将使用交叉验证来评估所有可能的超参数值组合。

💮1 使用GridSearchCV

  • 这种方法就是通过不断搜索匹配选出最好的超参数

具体代码如下

# 导入所需库
import numpy as np
from sklearn import linear_model, datasets
from sklearn.model_selection import GridSearchCV
# 加载数据
iris = datasets.load_iris()
features = iris.data
target = iris.target
# 创建模型
logistic = linear_model.LogisticRegression()

logistic回归有两个参数,一个是正则化惩罚的方式L1,L2
还有一个是正则化系数C

penalty = ['l1', 'l2']
C = np.logspace(0, 4, 10)
hyperparameters = dict(C=C, penalty=penalty)
# 创建网格搜索对象
gridsearch = GridSearchCV(logistic, hyperparameters, cv=5)

默认情况下,在找到最佳超参数之后,GridSearchCV将使用最佳超参数和整个数据集重新训练模型

best_model = gridsearch.fit(features, target)

下面我们来看一下最优的具体超参数

best_model.best_estimator_.get_params()
{'C': 7.742636826811269,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'auto',
 'n_jobs': None,
 'penalty': 'l2',
 'random_state': None,
 'solver': 'lbfgs',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}


正则化系数取C:7.74,惩罚项选择L2正则化

best_model.predict(features)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])


🍁2.使用随机搜索选择模型

当您探索相对较少的组合时,网格搜索方法很好,如前一个示例中所示,但当超参数搜索空间较大时,通常最好使用randomizedsearchcv。该类的使用方式与GridSearchCVclass大致相同,但它不是尝试所有可能的组合,而是评估给定的通过在每次迭代中为每个HyperParameter选择一个随机值来计算随机组合的数量。这种方法有两个主要好处

  • 如果让随机搜索运行1000次迭代,这种方法将为每个超参数探索1000个不同的值(而不是网格搜索方法中每个超参数只有几个值)。
  • 只需设置迭代次数,就可以更好地控制要分配给hyperparametersearch的计算预算
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform
#c来自一个均匀分布
c = uniform(loc=0, scale=4)
hyperparameters = dict(C=c, penalty=penalty)
randomizedsearchCV = RandomizedSearchCV(logistic, hyperparameters, random_state=1, n_iter=100, cv=5)
best_model = randomizedsearchCV.fit(features, target)
best_model.best_estimator_.get_params()
{'C': 1.668088018810296,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'warn',
 'n_jobs': None,
 'penalty': 'l1',
 'random_state': None,
 'solver': 'warn',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}


可以看到此时最优超参数为C:1.67正则化方式选L1

🏵️3.从多种学习算法中选择最佳模型

from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
np.random.seed(10)
iris = datasets.load_iris()
pip = Pipeline([('classifier', RandomForestClassifier())])
search_space = [{'classifier':[LogisticRegression()],
                 'classifier__penalty': ['l1', 'l2'],
                 'classifier__C': np.logspace(0, 4, 10)},
                {'classifier': [RandomForestClassifier()],
                 'classifier__n_estimators':[10, 100, 1000],
                 'classifier__max_features':[1, 2, 3]}]
gridsearch = GridSearchCV(pip, search_space, cv=5)
best_model = gridsearch.fit(features, target)
best_model.best_estimator_.get_params()
{'memory': None,
 'steps': [('classifier', LogisticRegression(C=7.742636826811269))],
 'verbose': False,
 'classifier': LogisticRegression(C=7.742636826811269),
 'classifier__C': 7.742636826811269,
 'classifier__class_weight': None,
 'classifier__dual': False,
 'classifier__fit_intercept': True,
 'classifier__intercept_scaling': 1,
 'classifier__l1_ratio': None,
 'classifier__max_iter': 100,
 'classifier__multi_class': 'auto',
 'classifier__n_jobs': None,
 'classifier__penalty': 'l2',
 'classifier__random_state': None,
 'classifier__solver': 'lbfgs',
 'classifier__tol': 0.0001,
 'classifier__verbose': 0,
 'classifier__warm_start': False}


对于该数据集,上述结果表明使用logistic回归的效果比随机森林更好

本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!

相关文章
|
6天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
50 33
|
7天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
31 10
|
27天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
66 8
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
140 4
|
4天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
45 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
20天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024