Python机器学习从入门到高级:手把手教你处理分类型数据(含详细代码)

简介: Python机器学习从入门到高级:手把手教你处理分类型数据(含详细代码)

python机器学习:分类型数据处理**

  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

@TOC
在构建模型时,我们经常遇见一些分类型数据,此时需要对这些分类型数据进行相应转换。本章介绍如何使用python处理分类型数据,首先分类型数据主要包括以下两种。

  • 本身没有顺序的称为nominal,也称为==名义变量==
    例如性别
  • 本身具有顺序的称为ordinal,也称为==定序变量==
    例如年纪:老年、中年、青年

如果我们不对分类型数据进行处理的话,那么无法将它们直接构建模型,在机器学习中,处理分类型数据最常用的方法是进行one-hot(独热编码)

💮1. 对名义变量进行转换

使用sklearnLabelBinarizer对这些分类数据进行编码,具体代码如下

# 导入相关库
import numpy as np
from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer
# 创建模拟数据
feature = np.array([['Texas'],
                    ['California'],
                    ['Texas'],
                    ['Delaware'],
                    ['Texas']])
# 创建one-hot编码器 也就是将其以矩阵0 1 来表示,
one_hot = LabelBinarizer()
classes = one_hot.fit_transform(feature)
classes
array([[0, 0, 1],
       [1, 0, 0],
       [0, 0, 1],
       [0, 1, 0],
       [0, 0, 1]])


如上图所示,001表示Texas,010表示Delaware

使用classes_查看分类

one_hot.classes_
array(['California', 'Delaware', 'Texas'], dtype='<U10')



# 对one_hot 进行逆编码转换
one_hot.inverse_transform(classes)
array(['Texas', 'California', 'Texas', 'Delaware', 'Texas'], dtype='<U10')



import pandas as pd

使用pandas来进行one-hot编码

pd.get_dummies(feature[:,0])
California Delaware Texas
0 0 0 1
1 1 0 0
2 0 0 1
3 0 1 0
4 0 0 1
# sklearn 还可以处理每个观测值有多个分类的情况
multiclass_feature = [('Texas', 'Florida'),
                      ('California', 'Alabama'),
                      ('Texas', 'Florida'),
                      ('Delware', 'Florida'),
                      ('Texas', 'Alabama')]
one_hot_multiclass = MultiLabelBinarizer()
one_hot_multiclass.fit_transform(multiclass_feature)
array([[0, 0, 0, 1, 1],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 1, 1],
       [0, 0, 1, 1, 0],
       [1, 0, 0, 0, 1]])



one_hot_multiclass.classes_
array(['Alabama', 'California', 'Delware', 'Florida', 'Texas'],
      dtype=object)


🏵️2. 对ordinal分类特征编码

对于定序类变量,这些变量的取值是有一定顺序的,此时,我们需要指定对应的编码

dataframe = pd.DataFrame({'Score': ['Low', 'Low', 'Medium', 'Medium', 'High']})
scale_mapper = {'Low':1,
                'Medium':2,
                'High':3}
dataframe['Score'].replace(scale_mapper)
0    1
1    1
2    2
3    2
4    3
Name: Score, dtype: int64

其中:

  • 1-Low
  • 2-Medium
  • 3-High

🌺3. 对特征字典编码

有的时候我们还会遇见一些特征字典,例如颜色的RGB值,如下所示

data_dict = [{'Red':2, 'Blue':4},
             {'Red':2, 'Blue':3},
             {'Red':1, 'Yellow':2},
             {'Red':2, 'Yellow':2}]
data_dict
[{'Red': 2, 'Blue': 4},
 {'Red': 2, 'Blue': 3},
 {'Red': 1, 'Yellow': 2},
 {'Red': 2, 'Yellow': 2}]


此时的data_dict就是一个特征字典,下面我们看如何使用DictVectorizer将其进行编码

from sklearn.feature_extraction import DictVectorizer
dictvectorizer = DictVectorizer(sparse=False)# 默认的是会返回稀疏矩阵,此时由于矩阵比较小,我们设置强制返回稠密矩阵
features = dictvectorizer.fit_transform(data_dict)
features
array([[4., 2., 0.],
       [3., 2., 0.],
       [0., 1., 2.],
       [0., 2., 2.]])


第一列表示Blue的值,第二列表示Red的值,第三列表示Yellow的值

feature_names = dictvectorizer.get_feature_names()
feature_names
['Blue', 'Red', 'Yellow']

pd.DataFrame(features, columns=feature_names)
Blue Red Yellow
0 4.0 2.0 0.0
1 3.0 2.0 0.0
2 0.0 1.0 2.0
3 0.0 2.0 2.0

🌻4. 填充缺失的分类值

==方法一==:
当分类特征中包含缺失值,我们可以用预测值来填充,下面演示如何使用使用KNN分类器来进行填充

# 导入相关库
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 导入数据
X = np.array([[0, 2.10, 1.45],
              [1, 1.18, 1.33],
              [0, 1.22, 1.27],
              [1, -0.21, -1.19]])
# 第一列为nan
X_with_nan = np.array([[np.nan, 0.87, 1.31],
                       [np.nan, -0.67, -0.22]])
# 训练knn分类器
clf = KNeighborsClassifier(3, weights='distance')
train_model = clf.fit(X[:, 1:], X[:,0])
# 预测缺失值的分类
imputed_values = train_model.predict(X_with_nan[:,1:])
# 将所预测的分类与原来的特征连接
X_with_imputed = np.hstack((imputed_values.reshape((2,1)), X_with_nan[:,1:]))
X_with_imputed
array([[ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])



np.vstack((X, X_with_imputed))
array([[ 0.  ,  2.1 ,  1.45],
       [ 1.  ,  1.18,  1.33],
       [ 0.  ,  1.22,  1.27],
       [ 1.  , -0.21, -1.19],
       [ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])


这种方法是通过将其他特征作为特征矩阵来进行预测,从而求得缺失值

==方法二==:选取特征中出现最多的特征值来进行填充,使用simpleimputer

# 导入相关库
from sklearn.impute import SimpleImputer
X_complete = np.vstack((X,X_with_imputed))
imputet = SimpleImputer(strategy='most_frequent')
imputet.fit_transform(X_complete)
array([[ 0.  ,  2.1 ,  1.45],
       [ 1.  ,  1.18,  1.33],
       [ 0.  ,  1.22,  1.27],
       [ 1.  , -0.21, -1.19],
       [ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])


方法二在处理很多数据的时候可能会方便一些,方法一使用KNN预测的效果更好

🌼5. 处理不均衡分类

  • 收集更多的数据
  • 改变评估模型的衡量标准
  • 使用嵌入分类权重参数的模型

使用鸢(yuan)尾花 数据集 ,默认每种类型都有五十个数据,这里我们删除山鸢尾的四十个数据

# 首先导入相关数据
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier#随机森林分类器
# 加载iris数据集
iris = load_iris()
features = iris.data
target = iris.target
target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])



# 移除前40个features
features = features[40:, :]
target = target[40:]
# 转换成一个二元来观察观测值是否为0
target = np.where((target == 0), 0, 1)
target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

对于这种不均衡的数据,我们可以选择在训练时对其进行加权处理,我们在这里使用随机森林分类,通过weights参数来进行处理权重

# 创建权重
weights = {0: .9, 1:0.1}
# 创建一个带权重的随机森林分类器
RandomForestClassifier(class_weight=weights)
RandomForestClassifier(class_weight={0: 0.9, 1: 0.1})


还可以传入balanced参数,自动创建于分类的频数成反比的权重

# 训练一个带均衡分类权重的随机森林分类器
RandomForestClassifier(class_weight='balanced')
RandomForestClassifier(class_weight='balanced')


🌷6. 重采样

处理不均衡分类数据的另一个思路是使用重采样方法,对占多数的使用下采样,对占少数部分的使用上采样,在下采样中,从占多数的分类中取出观测值,创建一个数量与占少数的分类相同的子集

下面对鸢尾花数据进行操作

# 给每个分类的观察值标签
i_class0 = np.where(target==0)[0]
i_class1 = np.where(target==1)[0]
# 计算每个分类值的观察值数量
n_class0 = len(i_class0)
n_class1 = len(i_class1)
# 对于每个分类为0的观察值,从分类为一的数据进行无放回的随机采样
i_class1_downsampled = np.random.choice(i_class1, size=n_class0, replace=False)
np.hstack((target[i_class0], target[i_class1_downsampled]))
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])



# 将分类为0和分类为1的特征矩阵连接起来
np.vstack((features[i_class0,:], features[i_class1_downsampled, :]))[0:5]
array([[5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4]])


本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!
相关文章
|
1天前
|
JSON 关系型数据库 数据库
《Python 简易速速上手小册》第6章:Python 文件和数据持久化(2024 最新版)
《Python 简易速速上手小册》第6章:Python 文件和数据持久化(2024 最新版)
24 0
|
2天前
|
机器学习/深度学习 Python 数据处理
Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据
Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据
20 0
Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据
|
2天前
|
存储 机器学习/深度学习 数据可视化
Python面板时间序列数据预测:格兰杰因果关系检验Granger causality test药品销售实例与可视化
Python面板时间序列数据预测:格兰杰因果关系检验Granger causality test药品销售实例与可视化
42 6
|
2天前
|
机器学习/深度学习 数据采集 供应链
从数据到决策:scikit-learn在业务分析中的应用
【4月更文挑战第17天】本文探讨了scikit-learn在业务分析中的应用,包括数据预处理、分类、回归和聚类模型的构建,以及模型评估与优化。通过使用scikit-learn,企业能有效处理数据、预测趋势、客户细分并制定决策,从而提升经营效率和市场策略。随着机器学习的发展,scikit-learn在业务分析领域的潜力将持续释放,创造更多价值。
|
2天前
|
算法 数据可视化 Python
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
11 0
|
3天前
|
数据安全/隐私保护 Python
Python中的装饰器:提升代码可读性与灵活性
Python中的装饰器是一种强大的工具,可以在不改变函数原有逻辑的情况下,为函数添加额外的功能。本文将介绍装饰器的基本概念和用法,并通过实例演示如何利用装饰器提升代码的可读性和灵活性,使代码更加简洁、易于维护。
|
3天前
|
BI 开发者 数据格式
Python代码填充数据到word模板中
【4月更文挑战第16天】
|
3天前
|
数据可视化 算法 API
Python数据可视化-seaborn Iris鸢尾花数据
Python数据可视化-seaborn Iris鸢尾花数据
11 0
|
3天前
|
程序员 索引 Python
06-python数据容器-set(集合)入门基础操作
06-python数据容器-set(集合)入门基础操作
|
3天前
|
索引 容器
06-python数据容器-list列表定义/list的10个常用操作/列表的遍历/使用列表取出偶数
06-python数据容器-list列表定义/list的10个常用操作/列表的遍历/使用列表取出偶数

热门文章

最新文章