两种方法教你一行代码实现探索性数据分析报告

简介: 两种方法教你一行代码实现探索性数据分析报告

Python数据分析


  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎关注、点赞、收藏、订阅专栏
最近小伙伴问我有什么刷题网站推荐,在这里推荐一下牛客网,里面包含各种面经题库,全是免费的题库,可以全方面提升你的职业竞争力,提升编程实战技巧,赶快来和我一起刷题吧!牛客网链接|python篇

💮两种方法教你一行代码实现探索性数据分析报告

==探索性数据分析(EDA)== 是使用可视化方法总结和分析数据集主要特征的过程。EDA是数据科学家要做的第一部分,如果我们不懂得如何进行EDA,那么无法对数据进行进一步的建模。上一篇文章我以泰坦尼克号数据为例,介绍了如何使用python详细的进行探索性数据分析,但有时这是很耗费时间的,现在,我介绍两种方法实现==一行代码生成探索性数据分析报告==。分别使用以下两个包,如果没有安装的小伙伴先去安装一下。

  • Sweetviz
  • pandas_profiling

我们照样使用==泰坦尼克号数据集==进行分析,需要相关数据集的看我这篇文章:https://blog.csdn.net/weixin_45052363/article/details/124383398

  • 先导入数据
import pandas as pd
from pandas_profiling import ProfileReport
df = pd.read_csv("train.csv")
df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
df.shape
(891, 12)


🏵️1. Sweetviz

==Sweetviz== 一个python开源库,通过基本的可视化来分析数据,并生成一个html文件。这个库的主要优点是我们可以 ==比较数据集==。
首先我们创建一个名为sweet_Analysized_report的文件,显示探索性数据分析结果。在本报告中,我们可以很容易地找到不同变量的特征,如:数量、缺失值、不同值、最大值、最小值、平均值等。具体代码和结果如下图所示

import sweetviz as sv
sweet_report = sv.analyze(df)
sweet_report.show_html('sweet_report.html')
  • ==相关系数热力图==

image-20220428000518658

  • ==Age分布情况==

image-20220428000524465

  • ==sibsip分布情况==

image-20220428000528937

==在这个Html文件中,我们可以看到其他每个变量的分布情况,大家可以自行验证测试。==

🌹2. 比较探索性数据分析

Sweetviz还支持比较不同数据集的探索性数据分析,首先,我们将数据集分成两部分,然后进行比较,然后保存此比较报告。数据集的两部分显示两种不同的颜色橙色蓝色。具体代码和结果见下文:

df1 = sv.compare(df[445:], df[:445])
df1.show_html('Compare.html')

这里我把数据分为两部分,分别有445和446个数据。

  • ==survived分布情况==

image-20220428000605910

  • ==Pclass分布情况==

image-20220428000610892

  • ==sex分布情况==

image-20220428000616112

🥀3. pandas_profiling

==pandas_profiling==基于pandasDataFrame数据类型,可以简单快速地进行探索性数据分析。和sweetviz类似,pandas_profiling可以返回一个html文件,包含如下内容

  • 数据整体概要:数据类型,唯一值,缺失值等
  • 各个变量的描述性统计分析
  • 各个变量的分布情况,直方图和条形图
  • 变量间的相关系数热力图等

具体代码和结果如下:

design_report = ProfileReport(df)
design_report.to_file(output_file='report.html')
  • ==变量分布情况==

image-20220428000643490

  • ==相关系数热力图==

image-20220428000652333

  • ==变量关系图==

image-20220428000659451

  • ==数据总体概要==

image-20220428000707130

✨总结

用上述两种方法得到的探索性数据分析是非常简易的。如果要想详细了解数据的话,建议一步一步根据自己的需求进行分析。具体可以看下面这篇推荐的文章,不过通过上述两种方法可以让我们大致初步的了解一下数据情况,并且可以节约很多时间(毕竟探索性数据分析真的很花费时间)

文章推荐

🎄不知道如何进行探索性数据分析(EDA)?超详细教程,快来学习吧

在后续我还会考虑介绍一些如何使用python进行特征工程、数据清洗、模型构建以及一些数据挖掘实战项目。各位的点赞、收藏、评论、关注是我写作最大的动力!!!

最近小伙伴问我有什么刷题网站推荐,在这里推荐一下牛客网,里面包含各种面经题库,全是免费的题库,可以全方面提升你的职业竞争力,提升编程实战技巧,赶快来和我一起刷题吧!牛客网链接|python篇
相关文章
|
5月前
|
自然语言处理 数据挖掘 数据处理
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
201 3
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
|
9月前
|
SQL 人工智能 算法
TDengine 发布时序数据分析 AI 智能体 TDgpt,核心代码开源
2025 年 3 月 26 日,涛思数据通过线上直播形式正式发布了其新一代时序数据分析 AI 智能体——TDgpt,并同步开源其核心代码(GitHub 地址:https://github.com/taosdata/TDengine)。这一创新功能作为 TDengine 3.3.6.0 的重要组成部分,标志着时序数据库在原生集成 AI 能力方面迈出了关键一步。
537 0
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【数据分析】基于matlab私家车充电模型(含私家车日行驶距离概率密度及累加函数,电动汽车出发时间(或者称开始充电的时间)概率)(Matlab代码实现)
【数据分析】基于matlab私家车充电模型(含私家车日行驶距离概率密度及累加函数,电动汽车出发时间(或者称开始充电的时间)概率)(Matlab代码实现)
104 0
|
11月前
|
数据采集 SQL 数据挖掘
电商数据分析的方法
电商数据分析涵盖从业务需求理解到数据呈现的全流程。初学者应循序渐进,掌握数据清洗、转换等技能,Python是重要工具。社交媒体营销分析关注用户参与度和KOL影响。实战教程如《2019电商数据分析师实战项目》提供Excel、SQL及Tableau应用案例,帮助巩固理论知识。代码示例展示了如何使用Pandas和SQLAlchemy进行销售数据分析,计算转化率。 (注:联系方式和感谢语已省略以符合要求)
电商数据分析的方法
|
数据可视化 前端开发 数据挖掘
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(上)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
780 1
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
275 1
|
数据挖掘 数据处理
ChatGPT在常用的数据分析方法中的应用(交叉分析)
ChatGPT在常用的数据分析方法中的应用(交叉分析)
292 1
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
463 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一