# 【深度学习】:《PyTorch入门到项目实战》第八天:权重衰退(含源码)

简介: 前一节我们描述了过拟合的问题,虽然我们可以通过增加更多的数据来减少过拟合,但是成本较高,有时候并不能满足。因此现在我们来介绍一些正则化模型的方法。在深度学习中,权重衰退是使用较为广泛的一种正则化方法。具体原理如下。
  • ✨本文收录于【深度学习】:《PyTorch入门到项目实战》专栏,此专栏主要记录如何使用PyTorch实现深度学习笔记,尽量坚持每周持续更新,欢迎大家订阅!
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

参考资料:本专栏主要以沐神《动手学深度学习》为学习资料,记录自己的学习笔记,能力有限,如有错误,欢迎大家指正。同时沐神上传了的教学视频和教材,大家可以前往学习。

请添加图片描述

1.基本概念

前一节我们描述了过拟合的问题,虽然我们可以通过增加更多的数据来减少过拟合,但是成本较高,有时候并不能满足。因此现在我们来介绍一些正则化模型的方法。在深度学习中,权重衰退是使用较为广泛的一种正则化方法。具体原理如下。
我们引入L2正则化,此时我们的损失函数为:

$$ \frac{1}{2m}\sum_{i=1}^{n}(W^TX^{(i)}+b-y^{(i)})^2+\frac{\lambda}{2}||W||^2 $$

其中,$\frac{\lambda}{2}||W||^2$称为惩罚项
对新的随时函数求梯度得到:

$$ \frac{dL}{dw}+\lambda W $$

和我们之前更新参数一样,L2正则化回归的梯度下降更新如下:

$$ w := (1-\eta\lambda)w-\eta \frac{dL}{dw} $$

通常$\eta\lambda<1$,因此在深度学习中我们称为权重衰退。
注意事项:

  • 1.我们只对权重W进行惩罚,而不对b进行惩罚
  • 2.$\lambda$是一个超参数,值越大,则对权重的衰退越大,当趋近无穷时,权重趋近0,相反如果值为0,则没有约束。
  • 3.L2正则化不能实现稀疏的结果,如果想要减少特征,使用L1正则化进行特征选择。
    下面通过具体代码来看看具体是如何实现的

2.代码实现

和上一章一样,照样使用模拟数据集,生成数据集如下:

$$ y = 0.1 + \sum_{i = 1}^d 0.01 x_i + \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, 0.01^2) $$

2.1 生成数据集

这里假设真实的数据如下:

$$ y = 0.1 + \sum_{i = 1}^{200} 0.01 x_i + \epsilon $$

下面我们先生成数据集

"""导入相关库"""
import torch
from d2l import torch as d2l
from torch import nn
%matplotlib inline
# 定义相关函数。这是沐神教材中的函数,如果下载了d2l可以直接导入
def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))
def load_array(data_arrays, batch_size, is_train=True): 
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)#将数据转换为tensor
    return data.DataLoader(dataset, batch_size, shuffle=is_train)
"""生成数据集"""
n_train, n_test, num_inputs, batch_size = 50, 100, 200, 5#定义相关训练集,验证集,输入变量,以及batch的大小
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.1#定义真实的参数
train_data = d2l.synthetic_data(true_w, true_b, n_train)#生成模拟数据,具体函数如下
train_iter = d2l.load_array(train_data, batch_size)#加载训练集数据
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

根据上一章的介绍,我们知道样本越小越容易造成过拟合,这里我们将样本量设置为100,但是参数却有200个,这种情况下p>n,很容易造成过拟合现象。

2.2 初始化参数

生成数据集后,下一步就是初始化参数,这里我们对于权重$w$初始化为标准正态分布,偏差$b$初始化为0

def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)#生成标准正态分布
    b = torch.zeros(1, requires_grad=True)#生成全部为0的数据
    return [w, b]

2.3 定义惩罚项

这里我们定义L2正则化,具体代码如下所示

def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2

2.3 训练

这里和之前线性回归训练基本一致,唯一不同的是多了一个惩罚项,因此lambd为超参数

def train(lambd):
    w, b = init_params()#初始化参数
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss#这里使用匿名函数,定义了两个函数,一个是求解模型结果,一个是损失函数
    num_epochs, lr = 100, 0.003
    """定义相关图形设置"""
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    """模型训练,更新参数"""
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        """绘制训练误差和测试误差"""
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())

首先,我们来看看不增加惩罚项的情况,即和我们之前的线性回归一致,此时,存在严重的过拟合现象,如下图所示

train(lambd=0)

image-20220527161148919

从上图结果来看,存在严重的过拟合问题,验证误差远远比训练误差大。下面我们来看看lambd为5的情况下的结果

train(lambd=5)

image-20220527161308660

可以看出,随着lambd的增加,验证误差不断减少,但是还是存在过拟合。

def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))#定义线性神经网络
    for param in net.parameters():
        param.data.normal_()#初始化参数
    loss = nn.MSELoss(reduction='none')#定义MSE损失函数
    num_epochs, lr = 100, 0.003#定义训练次数和学习率
    # 偏置参数没有衰减
    trainer = torch.optim.SGD([
        {"params":net[0].weight,'weight_decay': wd},
        {"params":net[0].bias}], lr=lr)#定义权重衰退,其中超参数为wd
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])#绘图
    """训练模型"""
    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)

image-20220527162054063

train_concise(3)

image-20220527162020261

3.拓展部分

沐神的参考教材中使用的是L2正则化,我们接下来看看使用L1正则化的效果,首先需要定义一下L1正则化,如下所示:

$$ \frac{1}{2m}\sum_{i=1}^{n}(W^TX^{(i)}+b-y^{(i)})^2+{\lambda}|W| $$

def l1_penalty(w):
    return torch.sum(torch.abs(w))
def train_l1(lambd):
    w, b = init_params()#初始化参数
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss#这里使用匿名函数,定义了两个函数,一个是求解模型结果,一个是损失函数
    num_epochs, lr = 100, 0.003
    """定义相关图形设置"""
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    """模型训练,更新参数"""
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L1范数惩罚项,
            # 广播机制使l1_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l1_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        """绘制训练误差和测试误差"""
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())
train_l1(1)

image-20220527162002373

可以看出使用L1正则化,当lambd为1的时候,就可以使得验证误差基本等于训练误差。其实正如我们之前说的,L2正则化只能将参数压缩,但是不能去除为0,我们这个模拟数据集中,p为200,n为100,p>>n,此时使用L1正则化可以使得某些特征的系数为0,从而更好的缓解过拟合问题。 本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!
相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
7天前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
15 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
软件工程师,入门下深度学习吧
软件工程师,入门下深度学习吧
27 9
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
13天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:从理论到实践
【9月更文挑战第22天】本文将带你走进深度学习的世界,从基础的理论概念出发,逐步深入到实践应用。我们将探讨神经网络的工作原理,以及如何通过编程实现一个简单的深度学习模型。无论你是初学者还是有一定基础的学习者,都能在这篇文章中找到有价值的信息。让我们一起揭开深度学习的神秘面纱,探索这个充满无限可能的领域吧!
|
16天前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
15天前
|
机器学习/深度学习 数据挖掘 PyTorch
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
20 1
|
21天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
38 7
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能的魔法:深度学习入门
【9月更文挑战第15天】在这篇文章中,我们将探索深度学习的奥秘,从基本原理到实际应用,一步步揭示这一技术如何改变我们的世界。你将了解神经网络的核心概念,学习如何训练模型,并看到深度学习在不同领域的应用案例。无论你是初学者还是有一定基础的学习者,这篇文章都将为你打开一扇通往AI未来的大门。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
深度学习领域中pytorch、onnx和ncnn的关系
PyTorch、ONNX 和 NCNN 是深度学习领域中的三个重要工具或框架,它们在模型开发、转换和部署过程中扮演着不同但相互关联的角色。
62 11
下一篇
无影云桌面