为什么进程切换比线程切换代价大,效率低?【TLB:页表缓存/快表】

简介: 为什么进程切换比线程切换代价大,效率低?【TLB:页表缓存/快表】

参考:

一、为什么进程切换比线程切换代价大,效率更低?

首先,先给出标题的答案(关键在于进程切换涉及到TLB的失效及更新,线程不涉及):

因为,每次进程切换时,都会涉及页表的切换,不过**切换页表这个操作本身是不太耗时的。但是在切换之后,TLB(页表缓存/快表)就失效了,所以在进行地址转化时就需要重新去查找页表,这就造成了程序运行的效率低下。
而同一个进程的线程之间是共用一个页表的,所以线程之间的切换是不需要切换页表的,因此线程切换不存在上述代价大,效率低的问题。**

其次,再来了解下几个基本概念:

  • 虚拟内存技术:提供一种虚拟地址到实际物理地址的映射,将连续的虚拟地址暴露给程序,而实际上他们在物理内存(比如内存条)上面是不连续的。

虚拟内存能够很好的帮助程序员避免麻烦的内存管理与冲突等问题,并且将内存作为模块化独立出来。

  • 虚拟内存地址:程序所使用的内存地址(Virtual Memory Address)。
  • 物理内存地址:实际存在硬件里面的空间地址(Physical Memory Address)。

二、内存分页与页表

  • 内存分页:是把整个虚拟内存和物理内存空间切成一段段固定大小的尺寸。这样一个连续并且尺寸固定的内存空间叫做(Page)。

在 Linux 下,页是访问内存的最小单位,每一页大小为 4KB

  • 页表:记录【进程 虚拟地址】与【内存 物理地址】的映射关系。

每个进程都拥有自己的虚拟地址空间,也拥有一个页表。
在这里插入图片描述
如果程序要访问虚拟地址时,由操作系统转换成不同的物理地址,这样不同的进程在运行时,写入的是不同的物理地址,这样就不会冲突了。

页表是存储在内存里的,而CPU芯片中的 内存管理单元 (MMU)就负责将虚拟内存地址转换成物理地址的工作。

而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入系统内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。

页表使用虚拟地址的页号作为索引,以找到实际物理存储器中的页号,即:key = 虚拟地址的页号, val = 实际物理存储器中的页号。索引的过程如下图:
在这里插入图片描述

三、TLB(页表缓存/快表)

大家都知道, 计算机中的cpu的处理速度是要远快于内存操作的,那么每次cpu要读取数据时都需要等待内存就绪才行,这在一定程度上限制了cpu的执行效率。

于是计算机科学家们根据局部性原理,就在 CPU 芯片中加入了一个专门存放程序最常访问页表项的 Cache 高速缓存,这个 Cache 就是 TLB(Translation Lookaside Buffer) ,通常称为 页表缓存转址旁路缓存快表等,可以极大提高地址转换速度,加速对于页表的访问。

  • 理解:TLB可以看作是一种硬件的哈希表,来快速查找 高速cache 中是否存在特定地址的数据,而其中应用到的内存淘汰策略则是常被提到的LRU内存淘汰策略。
  • 作用:可以加速页表读取,极大提高虚拟地址到物理地址的转换速度。
  • 过程:那么对于一次存取,就会有分 3 种的情况:

    • TLB hit:命中缓存直接访问内存取数据
    • TLB miss:未命中缓存,但是在内存中有对应页 → 【要再去页表中找地址】
    • TLB miss:同时内存中也没有对应页,发生缺页 → 【要向磁盘要数据,同时更新 TLB 和 页表】

总之,就是先查找 TLB,如果缺失,那么查找页表;还缺就是发生缺页了,需要通过磁盘加载所需数据到物理内存中。如果查找 TLB 命中,那么根据 TLB 获取物理地址,然后查找数据 cache,后续就算普通的 cache 查找了。

加入 TLB 之后,虚拟地址到物理地址的完整地址映射长这样:
在这里插入图片描述

最后,附上一张关于 TLB 的总流程图:
在这里插入图片描述

最后再补充一点:
对于一个内存地址是如何转换为实际的物理内存地址的呢? 其实分为 3 个步骤:

  • 把虚拟内存地址切分成页号偏移量
  • 根据页号,从页表里面查询对应的物理页号
  • 直接拿物理页号加上前面的偏移量,就得到了实际的物理内存地址

四、总结

  • 为什么进程切换比线程切换代价大,效率低?

    • 关键在于进程切换涉及到TLB的失效及更新,线程不涉及
  • 内存分页会把整个虚拟内存和物理内存空间切成一段段尺寸固定大小的在 Linux 下,页是访问内存的最小单位,占 4KB。
  • 页表记录【虚拟地址空间】与【物理地址空间】的映射关系。
  • 为了加速页表的读取,出现了一种存放 程序最常访问页表项的 Cache 高速缓存,称之为TLB,可以极大提高虚拟地址到物理地址的转换速度。
目录
相关文章
|
9天前
|
消息中间件 并行计算 安全
进程、线程、协程
【10月更文挑战第16天】进程、线程和协程是计算机程序执行的三种基本形式。进程是操作系统资源分配和调度的基本单位,具有独立的内存空间,稳定性高但资源消耗大。线程是进程内的执行单元,共享内存,轻量级且并发性好,但同步复杂。协程是用户态的轻量级调度单位,适用于高并发和IO密集型任务,资源消耗最小,但不支持多核并行。
27 1
|
21天前
|
存储 消息中间件 人工智能
进程,线程,协程 - 你了解多少?
本故事采用简洁明了的对话方式,尽洪荒之力让你在轻松无负担的氛围中,稍微深入地理解进程、线程和协程的相关原理知识
38 2
进程,线程,协程 - 你了解多少?
|
7天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
10天前
|
消息中间件 并行计算 安全
进程、线程、协程
【10月更文挑战第15天】进程、线程和协程是操作系统中三种不同的执行单元。进程是资源分配和调度的基本单位,每个进程有独立的内存空间;线程是进程内的执行路径,共享进程资源,切换成本较低;协程则更轻量,由用户态调度,适合处理高并发和IO密集型任务。进程提供高隔离性和安全性,线程支持高并发,协程则在资源消耗和调度灵活性方面表现优异。
34 2
|
2月前
|
存储 消息中间件 资源调度
「offer来了」进程线程有啥关系?10个知识点带你巩固操作系统基础知识
该文章总结了操作系统基础知识中的十个关键知识点,涵盖了进程与线程的概念及区别、进程间通信方式、线程同步机制、死锁现象及其预防方法、进程状态等内容,并通过具体实例帮助理解这些概念。
「offer来了」进程线程有啥关系?10个知识点带你巩固操作系统基础知识
|
16天前
|
算法 安全 调度
深入理解操作系统:进程与线程的管理
【10月更文挑战第9天】在数字世界的心脏跳动着的,不是别的,正是操作系统。它如同一位无形的指挥家,协调着硬件与软件的和谐合作。本文将揭开操作系统中进程与线程管理的神秘面纱,通过浅显易懂的语言和生动的比喻,带你走进这一复杂而又精妙的世界。我们将从进程的诞生讲起,探索线程的微妙关系,直至深入内核,理解调度算法的智慧。让我们一起跟随代码的脚步,解锁操作系统的更多秘密。
20 1
|
21天前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
22 3
|
1天前
|
Linux 调度
探索操作系统核心:进程与线程管理
【10月更文挑战第24天】在数字世界的心脏,操作系统扮演着至关重要的角色。它不仅是计算机硬件与软件之间的桥梁,更是管理和调度资源的大管家。本文将深入探讨操作系统的两大基石——进程与线程,揭示它们如何协同工作以确保系统运行得井井有条。通过深入浅出的解释和直观的代码示例,我们将一起解锁操作系统的管理奥秘,理解其对计算任务高效执行的影响。
|
2月前
|
缓存 Java
创建一个可缓存线程池
创建一个可缓存线程池
30 4
|
2月前
|
资源调度 算法 调度
深入浅出操作系统之进程与线程管理
【9月更文挑战第29天】在数字世界的庞大舞台上,操作系统扮演着不可或缺的角色,它如同一位精通多门艺术的导演,精心指挥着每一个进程和线程的演出。本文将通过浅显的语言,带你走进操作系统的内心世界,探索进程和线程的管理奥秘,让你对这位幕后英雄有更深的了解。

相关实验场景

更多