数据结构与算法之爬楼梯&&动态规划

简介: 数据结构与算法之爬楼梯&&动态规划

一.题目(爬楼梯)


假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定 n 是一个正整数。示例 1:输入: 2

输出: 2

解释: 有两种方法可以爬到楼顶。

1 阶 + 1 阶

2 阶

示例 2:

输入: 3

输出: 3

解释: 有三种方法可以爬到楼顶。

1 阶 + 1 阶 + 1 阶

1 阶 + 2 阶

2 阶 + 1 阶


思路


本题大家如果没有接触过的话,会感觉比较难,多举几个例子,就可以发现其规律。


爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。


那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。


所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。


我们来分析一下,动规五部曲:


定义一个一维数组来记录不同楼层的状态


1)确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

2)确定递推公式

如何可以推出dp[i]呢?


从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。


首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。


还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。


那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!


所以dp[i] = dp[i - 1] + dp[i - 2] 。


在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。


这体现出确定dp数组以及下标的含义的重要性!


3)dp数组如何初始化


在回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]中方法。


那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。


例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。但总有点牵强的成分。


那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.


其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1。

从dp数组定义的角度上来说,dp[0] = 0 也能说得通。


需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。


所以本题其实就不应该讨论dp[0]的初始化!


我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。


所以原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。


4)确定遍历顺序


递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的。


5)举例推导dp数组


举例当n为5的时候,dp table(dp数组)应该是这样的:


e3e97009a69e05162d6f0387437c7181.png


如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样。

此时大家应该发现了,这不就是斐波那契数列么!

唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!

以上五部分析完之后,C++代码如下:

// 版本一
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};


  • 时间复杂度:$O(n)$
  • 空间复杂度:$O(n)$

当然依然也可以,优化一下空间复杂度,代码如下:

// 版本二
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        int dp[3];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            int sum = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = sum;
        }
        return dp[2];
    }
};



  • 时间复杂度:$O(n)$
  • 空间复杂度:$O(1)$

后面将讲解的很多动规的题目其实都是当前状态依赖前两个,或者前三个状态,都可以做空间上的优化。

相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
85 1
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
6月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
78 8
|
6月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
78 3
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
65 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
119 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
85 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
196 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
|
3月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
194 0