Python批量读取Excel并跨越不同xlsx文件求取平均值

简介: 本文介绍基于Python语言,实现对多个不同Excel文件进行数据读取与平均值计算的方法~

  本文介绍基于Python语言,实现对多个不同Excel文件进行数据读取与平均值计算的方法。

  首先,让我们来看一下具体需求:目前有一个文件夹,其中存放了大量Excel文件;文件名称是每一位同学的名字,即文件名称没有任何规律。

  而每一个文件都是一位同学全班除了自己之外的其他同学的各项打分,我们以其中一个Excel文件为例来看:

  可以看到,全班同学人数(即表格行数)很多、需要打分的项目(即表格列数)有11个(不算总分);同时,由于不能给自己打分,导致每一份表格中会有一行没有数据。

  而我们需要做的,就是求出每一位同学的、11个打分项目分别的平均分,并存放在一个新的、表头(行头与列头)与大家打分文件一致的总文件中,如下图。其中,每一个格子都代表了这位同学、这一项打分项目在经过班级除其之外的每一位同学打分后计算出的平均值。

  可以看到,一个人就需要算11次平均,更何况一个班会有数十位同学。如果单独用Excel计算,是非常麻烦的。

  而借助Python,就会简单很多。具体代码如下。在这里,就不再像平日里机器学习、深度学习代码博客那样,对代码加以逐段、分部分的具体解释了,直接列出全部代码,大家参考注释即可理解。

# -*- coding: utf-8 -*-
"""
Created on Thu Apr  8 16:24:41 2021

@author: fkxxgis
"""

import os
import numpy as np
from openpyxl import load_workbook

file_path='F:/班长/2020-2021综合测评与评奖评优/01_综合测评/地信XXXX班互评打分表/' #这里是每一位同学打分Excel文件存放的路径
output_path='F:/班长/2020-2021综合测评与评奖评优/01_综合测评/地信XXXX班综合素质测评互评打分表.xlsx' #这里是最终结果存放路径,请不要和上述路径一致
first_row=5 #第一个分数所在的行数
first_column=3 #第一个分数所在的列数
all_row=32 #班级同学总数
all_column=11 #需要计算的分数项目个数

all_excel=os.listdir(file_path) #获取打分文件路径下全部Excel文件
file_row=first_row+all_row-1
file_column=first_column+all_column-1
all_mean_score=np.zeros((file_row,file_column),dtype=float) #新建一个二维数组,存放每一位同学、每一项项目的分数平均值
for now_row in range(first_row,file_row+1):
    for now_column in range (first_column,file_column+1):
        all_score=[]
        for excel_num in range(0,len(all_excel)):
            now_excel=load_workbook(file_path+all_excel[excel_num]) #打开第一个打分Excel文件
            all_sheet=now_excel.get_sheet_names() #获取打分文件的全部Sheet名称
            now_sheet=now_excel.get_sheet_by_name(all_sheet[0]) #本文中分数全部存储于第一个Sheet,因此下标为0
            single_score=now_sheet.cell(now_row,now_column).value #获取对应单元格数据
            if single_score==None: #如果这个单元格为空(也就是自己不给自己打分的那一行)
                pass
            else:
                all_score.append(single_score)
        all_mean_score[now_row-1,now_column-1]=np.mean(all_score) #计算全部同学为这一位同学、这一个打分项目所打分数的平均值

output_excel=load_workbook(output_path) #读取结果存放Excel
output_all_sheet=output_excel.get_sheet_names() #这里代码含义同上
output_sheet=output_excel.get_sheet_by_name(output_all_sheet[0])
output_sheet=output_excel.active
for output_now_row in range(first_row,file_row+1):
    for output_now_column in range (first_column,file_column+1):
        exec("output_sheet.cell(output_now_row,output_now_column).value=all_mean_score[output_now_row-1,output_now_column-1]") #将二维数组中每一位同学、每一项打分项目的最终平均分数写入结果文件的对应位置
output_excel.save(output_path)

  至此,大功告成。

相关文章
|
12天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
22天前
|
监控 网络安全 开发者
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
52 20
|
28天前
|
存储 数据采集 数据处理
如何在Python中高效地读写大型文件?
大家好,我是V哥。上一篇介绍了Python文件读写操作,今天聊聊如何高效处理大型文件。主要方法包括:逐行读取、分块读取、内存映射(mmap)、pandas分块处理CSV、numpy处理二进制文件、itertools迭代处理及linecache逐行读取。这些方法能有效节省内存,提升效率。关注威哥爱编程,学习更多Python技巧。
|
29天前
|
存储 JSON 对象存储
如何使用 Python 进行文件读写操作?
大家好,我是V哥。本文介绍Python中文件读写操作的方法,包括文件读取、写入、追加、二进制模式、JSON、CSV和Pandas模块的使用,以及对象序列化与反序列化。通过这些方法,你可以根据不同的文件类型和需求,灵活选择合适的方式进行操作。希望对正在学习Python的小伙伴们有所帮助。欢迎关注威哥爱编程,全栈路上我们并肩前行。
|
6月前
|
SQL JSON 关系型数据库
n种方式教你用python读写excel等数据文件
n种方式教你用python读写excel等数据文件
100 1
|
8月前
|
存储 Python 内存技术
python WAV音频文件处理—— (1)读写WAV文件
python WAV音频文件处理—— (1)读写WAV文件
210 14
|
Python
python读写execle文件数据
python读写execle文件数据
|
9月前
|
数据挖掘 索引 Python
Python 读写 Excel 文件
Python 读写 Excel 文件
186 0
|
9月前
|
存储 JSON JavaScript
Python中读写(解析)JSON文件的深入探究
Python中读写(解析)JSON文件的深入探究
251 0
|
9月前
|
XML 安全 API
Python读写XML文件:深入解析与技术实现
Python读写XML文件:深入解析与技术实现
274 0

热门文章

最新文章