【BERT-多标签文本分类实战】之七——训练-评估-测试与运行主程序

简介: 【BERT-多标签文本分类实战】之七——训练-评估-测试与运行主程序

·请参考本系列目录:【BERT-多标签文本分类实战】之一——实战项目总览

·下载本实战项目资源:>=点击此处=<

[1] 损失函数与评价指标


  多标签文本分类任务,用的损失函数是BCEWithLogitsLoss,不是交叉熵损失函数cross_entropy!!

BCEWithLogitsLosscross_entropy有什么区别?

+

1)cross_entropy它就是算单标签的损失的,大家去看一下它的公式,它对一个文本只取概率最大的那个标签;

+

2)BCEWithLogitsLoss对模型输出取的是sigmoid,而cross_entropy对模型的输出取的是softmax。sigmoid和softmax虽然都是把一组数据放缩到[0,1]区间,但是softmax具有排斥性,放缩后的一组数据之和为1,所以这样一组标签概率只会有一个较大值;而sigmoid也是把一组数据放缩到[0,1]区间,但它更类似于等比例缩放,原来大的数现在还大,可以有多个较大的概率存在,所以sigmoid更适合在多标签文本分类任务中。所以要使用BCEWithLogitsLoss。

  本次实战项目中使用的评价指标有:准确率accuracy、精确率precision、汉明损失hamming_loss。是基于sklearn库实现的。

# 计算多标签准确率、精确率、hm
def APH(y_true, y_pred):
    return metrics.accuracy_score(y_true, y_pred), \
           metrics.precision_score(y_true, y_pred, average='samples'), \
           metrics.hamming_loss(y_true, y_pred)

还有其他评价指标,召回率、F1等等,评价指标还分可为micro和macro,种类较多,可以参考地址:https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

[2] 采样


  采样是指:把模型输出出来的概率,转化成独热数组,通常使用阈值为0.5的阈值函数,即概率大于0.5的标签采样为1,否则为0。本项目设置阈值为0.4、且只取2个标签。

# 预测多标签的输出,把概率值转化为独热数组
def Predict(outputs, alpha=0.4):
    predic = torch.sigmoid(outputs)
    zero = torch.zeros_like(predic)
    topk = torch.topk(predic, k=2, dim=1, largest=True)[1]
    for i, x in enumerate(topk):
        for y in x:
            if predic[i][y] > alpha:
                zero[i][y] = 1
    return zero.cpu()

[3] 训练


  训练代码如下:

def train(config, model, train_iter, dev_iter, test_iter, is_write):
    start_time = time.time()
    model.train()
    # 普通算法
    # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    # bert算法
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
    # BertAdam implements weight decay fix,
    # BertAdam doesn't compensate for bias as in the regular Adam optimizer.
    optimizer = AdamW(optimizer_grouped_parameters,lr=config.learning_rate,eps=1e-8)
    # 学习率指数衰减,每次epoch:学习率 = gamma * 学习率
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                            num_warmup_steps = 0,
                                            num_training_steps = len(train_iter) * config.num_epochs)
    total_batch = 0  # 记录进行到多少batch
    dev_best_loss = float('inf')
    last_improve = 0  # 记录上次验证集loss下降的batch数
    flag = False  # 记录是否很久没有效果提升
    if is_write:
        writer = SummaryWriter(
            log_dir="{0}/{1}__{2}__{3}__{4}".format(config.log_path, config.batch_size, config.pad_size,
                                                         config.learning_rate, time.strftime('%m-%d_%H.%M', time.localtime())))
    for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
        for i, (trains, labels) in enumerate(train_iter):
            outputs = model(trains)
            model.zero_grad()
            loss = Loss(outputs, labels)
            loss.backward()
            optimizer.step()
            if total_batch % 100 == 0:
                # 每多少轮输出在训练集和验证集上的效果
                true = labels
                predic = Predict(outputs)
                train_oe = OneError(outputs, true)
                train_acc, train_pre, train_hl = APH(true.data.cpu().numpy(), predic.data.cpu().numpy())
                dev_acc, dev_pre, dev_hl, dev_oe, dev_loss = evaluate(config, model, dev_iter)
                if dev_loss < dev_best_loss:
                    dev_best_loss = dev_loss
                    torch.save(model.state_dict(), config.save_path)
                    improve = '*'
                    last_improve = total_batch
                else:
                    improve = ''
                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6}, Train=== Loss: {1:>6.2}, Acc: {2:>6.2%}, Pre: {3:>6.2%}, HL: {4:>5.2} OE: {' \
                      '5:>6.2%}, Val=== Loss: {6:>5.2}, Acc: {7:>6.2%}, Pre: {8:>6.2%}, HL: {9:>5.2}, ' \
                      'OE: {10:>6.2%}, Time: {11} {12} '
                print(msg.format(total_batch, loss.item(), train_acc, train_pre, train_hl, train_oe,
                                 dev_loss, dev_acc, dev_pre, dev_hl, dev_oe, time_dif, improve))
                if is_write:
                    writer.add_scalar('loss/train', loss.item(), total_batch)
                    writer.add_scalar("acc/train", train_acc, total_batch)
                    writer.add_scalar("pre/train", train_pre, total_batch)
                    writer.add_scalar("oe/train", train_oe, total_batch)
                    writer.add_scalar("hamming loss/train", train_hl, total_batch)
                    writer.add_scalar("loss/dev", dev_loss, total_batch)
                    writer.add_scalar("acc/dev", dev_acc, total_batch)
                    writer.add_scalar("pre/dev", dev_pre, total_batch)
                    writer.add_scalar("oe/dev", dev_oe, total_batch)
                    writer.add_scalar("hamming loss/dev", dev_hl, total_batch)
                model.train()
            total_batch += 1
            if total_batch - last_improve > config.require_improvement:
                # 验证集loss超过1000batch没下降,结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break
        scheduler.step()  # 学习率衰减
        if flag:
            break
    if is_write:
        writer.close()
    return test(config, model, test_iter)

  需要解释的几点:

  1、bert模型采用AdamW做优化,不同层要设置不同的权重衰减值;

  2、writer这个变量主要是做数据可视化的,参考博客:【深度学习】pytorch使用tensorboard可视化实验数据

[4] 评估与测试


def test(config, model, test_iter):
    # test
    model.load_state_dict(torch.load(config.save_path))
    model.eval()
    start_time = time.time()
    test_acc, test_pre, test_rec, test_hl, test_loss, test_report = evaluate(config, model, test_iter,
                                                                             test=True)
    msg = 'Test Loss: {0:>5.2},  Test Acc: {1:>6.2%}, Test Pre: {2:>6.2%}, Test HL: {3:>5.2}, Test OE: {4:>6.2%}'
    print(msg.format(test_loss, test_acc, test_pre, test_rec, test_hl))
    print("Precision, Recall and F1-Score...")
    print(test_report)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)
    return test_loss, test_acc, test_pre, test_rec, test_hl
def evaluate(config, model, data_iter, test=False):
    model.eval()
    loss_total = 0
    predict_all = []
    labels_all = []
    with torch.no_grad():
        for texts, labels in data_iter:
            outputs = model(texts)
            oe = OneError(outputs.data.cpu(), labels.data.cpu())
            loss = Loss(outputs, labels)
            loss_total += loss
            labels = labels.data.cpu().numpy()
            predic = Predict(outputs.data)
            labels_all = np.append(labels_all, labels)
            predict_all = np.append(predict_all, predic.numpy())
    labels_all = labels_all.reshape(-1, config.num_classes)
    predict_all = predict_all.reshape(-1, config.num_classes)
    acc, pre, hl = APH(labels_all, predict_all)
    if test:
        report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=3)
        return acc, pre, hl, oe, loss_total / len(data_iter), report
    return acc, pre, hl, oe, loss_total / len(data_iter)

[5] 运行主程序run.py


if __name__ == '__main__':
    """配置参数
        dataSet     : 数据集名称. required.
        model_name  : 模型名称. required. 可选值['bert']
        is_write    : 是否开启tensorboard的记录绘图模式. 可选值[False, True]
    """
    M = ['bert','bert_RNN','bert_RCNN','bert_DPCNN']
    I = [False, True]
    dataSet = 'Reuters-21578'
    is_write = I[0]
    for model_name in M:
        x = import_module('models.' + model_name)
        config = x.Config(dataSet)
        # 设置numpy的随机种子,以使得结果是确定的
        np.random.seed(1)
        # 为CPU设置种子用于生成随机数,以使得结果是确定的
        torch.manual_seed(1)
        # 为当前GPU设置随机种子,以使得结果是确定的
        torch.cuda.manual_seed_all(1)
        # 保证每次结果一样
        torch.backends.cudnn.deterministic = True
        start_time = time.time()
        print("Loading data...")
        train_data, dev_data, test_data = build_dataset(config)
        train_iter = build_iterator(train_data, config)
        dev_iter = build_iterator(dev_data, config)
        test_iter = build_iterator(test_data, config)
        time_dif = get_time_dif(start_time)
        print("Time usage:", time_dif)
        # train
        model = x.Model(config).to(config.device)
        print(model.parameters)
        print(f'The model has {sum(p.numel() for p in model.parameters() if p.requires_grad):,} trainable parameters')
        train(config, model, train_iter, dev_iter, test_iter, is_write)

  代码还是比较好懂的,但是还是有一个整体能运行起来的项目体验更佳。

相关文章
|
2月前
|
测试技术 持续交付 UED
软件测试的艺术:确保质量的实战策略
在软件开发的舞台上,测试是那把确保每个功能如交响乐般和谐奏响的指挥棒。本文将深入探讨软件测试的重要性、基本类型以及如何设计高效的测试策略。我们将通过一个实际的代码示例,展示如何运用这些策略来提升软件质量和用户体验。
|
2月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
70 3
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
185 1
|
2月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
62 1
|
2月前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
73 2
|
2月前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
53 2
|
8月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图 REV1
Bert Pytorch 源码分析:五、模型架构简图 REV1
124 0
|
8月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图
Bert Pytorch 源码分析:五、模型架构简图
79 0
|
3月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
99 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
3月前
|
机器学习/深度学习 自然语言处理 知识图谱