Python集成大数据开发软件推送

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Python集成大数据开发软件推送

有三个关于大数据开发的软件,推送给大家。

01One1:Python3.9.6


Python是idle开发,开发容易,界面简单以及操作容易可视化。

链接:https://pan.baidu.com/s/1DSvY3D7LolkNonwM7R5xvg

提取码:cira


成功页面:

image.png


安装的时候注意要勾选:

image.png

这样以免后面配置了,比较方便。其余的都是下一步


02One2:Anaconda(32位+64位)


里面的插件较齐,可以直接使用。

链接:https://pan.baidu.com/s/1TaTn7hxNU9QtPLkAyn3c5w

提取码:kv53


成功页面:

image.png



一直可以下一步,注意下面两个都勾选,就不用手动配置环境变量了。

image.png


可以将这两个默认的选项取消勾选,这样会减少一些不必要的内存占用。

image.png

03One3:pyCharm


小编觉得,是Python的进阶版。

链接:https://pan.baidu.com/s/1fEGaANyP1XMZ_Qx2kzpI_g

提取码:o2d3


成功页面:


image.png


注意:Python3.9.6安装的时候会和Anaconda中的Python冲突,以至于在安装第三方库的时候会出现Not module named '第三方库名',解决https://blog.csdn.net/weixin_46462532/article/details/120241223?spm=1001.2014.3001.5501(CSDN链接)


亲测,解决Python和Anaconda不兼容问题

https://blog.csdn.net/weixin_46462532/article/details/120241223?spm=1001.2014.3001.5501


亲测,这个可以解决80%的安装库成功但是在Python中无法调用的情况,这不是唯一的方法,但是可以保证100%成功。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8天前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
48 15
|
21天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
56 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
【10月更文挑战第12天】本文探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
36 5
|
1月前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
【10月更文挑战第6天】本文探讨了性能优化和代码审查在Python开发中的重要性,提供了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
55 5
|
20天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
113 45
|
15天前
|
JSON 安全 API
如何使用Python开发API接口?
在现代软件开发中,API(应用程序编程接口)用于不同软件组件之间的通信和数据交换,实现系统互操作性。Python因其简单易用和强大功能,成为开发API的热门选择。本文详细介绍了Python开发API的基础知识、优势、实现方式(如Flask和Django框架)、实战示例及注意事项,帮助读者掌握高效、安全的API开发技巧。
41 3
如何使用Python开发API接口?
|
8天前
|
JSON API 数据格式
如何使用Python开发1688商品详情API接口?
本文介绍了如何使用Python开发1688商品详情API接口,获取商品的标题、价格、销量和评价等详细信息。主要内容包括注册1688开放平台账号、安装必要Python模块、了解API接口、生成签名、编写Python代码、解析返回数据以及错误处理和日志记录。通过这些步骤,开发者可以轻松地集成1688商品数据到自己的应用中。
24 1
|
14天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
21天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
69 7
|
23天前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
41 8
下一篇
无影云桌面