Python-两层神经网络的类

简介: 简单使用

image.png

代码实现

import numpy as np
def numerical_gradient(f,x):

h=1e-4
# 生成与x形状相同的数组
grad=np.zeros_like(x)
for idx in range(x.size):
    tmp_val=x[idx]
    x[idx]=tmp_val+h
    fxh1=f(x)
    x[idx]=tmp_val-h
    fxh2=f(x)
    grad[idx]=(fxh1-fxh2)/2*h
    x[idx]=tmp_val
return grad
    

def sigmold(x):

return 1/(1+np.exp(-x))

def softmax(a):

c=np.max(a)
exp_a=np.exp(a-c)
sum_exp_a=np.sum(exp_a)
y=exp_a/sum_exp_a
return  y

def cross_enroty_errorly(y,t):

if y.ndim==1:
    t=t.reshape(1,t.size)
    y=y.reshape(1,y.size)
batch_size=y.shape(0)
return -np.sum(np.log(y[np.arange(batch_size),t]+1e-7))/batch_size

class TwolayerNet:

def __init__(self,input_size,hidden_size,output_size,weight_init_std=0.01):
    self.params={}
    self.params["w1"]=weight_init_std*np.random.randn(input_size,hidden_size)
    self.params["w2"]=weight_init_std*np.random.randn(hidden_size,output_size)
    self.params["b1"]=np.zeros(hidden_size)
    self.params["b2"]=np.zeros(output_size)
def predict(self,x):
    w1,w2=self.params["w1"],self.params["w2"]
    b1,b2=self.params["b1"],self.params["b2"]
    a1 = np.dot(x,w1) + b1
    z1 = sigmold(a1)
    a2 = np.dot(z1,w2) + b1
    y=softmax(a2)
    return y
def loss(self,x,t):
    y=self.predict(x)
    return cross_enroty_errorly(y,t)
def accury(self,x,t):
    y=self.predict(x)
    y=np.argmax(y,axis=1)
    t=np.argmax(1,axis=1)
    accury=np.sum(y==t)/float(x.shape[0])
    return accury
def numerical_gradient(self,x,t):
    loss_w=lambda w:self.loss(x,t)
    grads={}
    grads["w1"]=(loss_w,self.params["w1"])
    grads["b1"] = numerical_gradient(loss_w, self.params["b1"])
    grads["w2"] = numerical_gradient(loss_w, self.params["w2"])
    grads["b2"] = numerical_gradient(loss_w, self.params["b2"])
    return grads
相关文章
|
2月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
275 51
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
69 4
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
475 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4月前
|
调度 Python
探索Python高级并发与网络编程技术。
可以看出,Python的高级并发和网络编程极具挑战,却也饱含乐趣。探索这些技术,你将会发现:它们好比是Python世界的海洋,有穿越风暴的波涛,也有寂静深海的奇妙。开始旅途,探索无尽可能吧!
106 15
|
4月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
125 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
5月前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
721 31
|
5月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
143 7
|
5月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
118 14
|
5月前
|
人工智能 Python
[oeasy]python083_类_对象_成员方法_method_函数_function_isinstance
本文介绍了Python中类、对象、成员方法及函数的概念。通过超市商品分类的例子,形象地解释了“类型”的概念,如整型(int)和字符串(str)是两种不同的数据类型。整型对象支持数字求和,字符串对象支持拼接。使用`isinstance`函数可以判断对象是否属于特定类型,例如判断变量是否为整型。此外,还探讨了面向对象编程(OOP)与面向过程编程的区别,并简要介绍了`type`和`help`函数的用法。最后总结指出,不同类型的对象有不同的运算和方法,如字符串有`find`和`index`方法,而整型没有。更多内容可参考文末提供的蓝桥、GitHub和Gitee链接。
115 11
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
361 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

推荐镜像

更多