【算法】回溯法的应用

简介: 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

1. 概念

  回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

 回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2. 基本思想

 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3. 回溯法解题的一般步骤

  1. 针对所给问题,确定问题的解空间:首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
  2. 确定结点的扩展搜索规则
  3. 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4.算法框架

  1. 问题框架

  设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。

  1. 非递归回溯框架
     int a[n],i;
    初始化数组a[];
     i = 1;
     while (i0(有路可走)   and  (未达到目标))   还未回溯到头
    {
        if(i  n)                                               搜索到叶结点
        {   
               搜索到一个解,输出;
         }
         else                                                    处理第i个元素
         { 
               a[i]第一个可能的值;
              while(a[i]在不满足约束条件且在搜索空间内)
              {
                  a[i]下一个可能的值;
              }
              if(a[i]在搜索空间内)
             {
                  标识占用的资源;
                  i = i+1;                               扩展下一个结点
             }
              else 
            {
                  清理所占的状态空间;             回溯
                  i = i –1; 
             }
         }
}
  1. 递归的算法框架

  回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:

 int a[n];
    try(int i)
    {
        if(in)
          输出结果;
         else
        {
           for(j = 下界; j = 上界; j=j+1)   枚举i所有可能的路径
           {
              if(fun(j))                  满足限界函数和约束条件
                {
                   a[i] = j;
                 ...                          其他操作
                   try(i+1);
                 回溯前的清理工作(如a[i]置空值等);
                 }
            }
        }
   }
目录
相关文章
|
20天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
38 3
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
124 63
|
3天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
8 0
|
14天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
23 1
|
20天前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
54 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
29天前
|
算法 安全 物联网
如何应用SM2算法进行身份认证
【10月更文挑战第5天】如何应用SM2算法进行身份认证
44 1
|
29天前
|
存储 算法 安全
SM2算法的应用场景有哪些?
【10月更文挑战第5天】SM2算法的应用场景有哪些?
56 1
|
1月前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
20 1
|
1月前
|
机器学习/深度学习 算法
深度学习中的优化算法及其应用
本文探讨了深度学习中常用的优化算法,包括梯度下降、随机梯度下降、动量方法和Adam方法。通过对比这些算法的优缺点及适用场景,帮助读者更好地理解和应用这些优化方法。
25 2
|
14天前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
12 0