每日一题 --- 942. 增减字符串匹配[力扣][Go]

简介: 每日一题 --- 942. 增减字符串匹配[力扣][Go]

题目:

由范围 [0,n] 内所有整数组成的 n + 1 个整数的排列序列可以表示为长度为 n 的字符串 s ,其中:

如果 perm[i] < perm[i + 1] ,那么 s[i] == ‘I’

如果 perm[i] > perm[i + 1] ,那么 s[i] == ‘D’

给定一个字符串 s ,重构排列 perm 并返回它。如果有多个有效排列perm,则返回其中 任何一个 。

示例 1:

输入:s = “IDID”

输出:[0,4,1,3,2]

示例 2:

输入:s = “III”

输出:[0,1,2,3]

示例 3:

输入:s = “DDI”

输出:[3,2,0,1]

提示:

1 <= s.length <= 105

s 只包含字符 “I” 或 “D”

解题代码:

func diStringMatch(s string) []int {
  var ans = make([]int, 0)
  h := len(s)
  l := 0
  // 确定第一位是最高还是最低
  for len(s) != 0 {
    u := s[0]
    long := 0
    if len(ans) == 0 {
      if u == uint8('I') {
        ans = append(ans, l)
        long = strings.Index(s, "D")
        if long == -1 {
          long = len(s)
        }
        for i := 1; i <= long; i++ {
          ans = append(ans, h-long+i)
        }
        h -= long
        l ++
      } else {
        ans = append(ans, h)
        long = strings.Index(s, "I")
        if long == -1 {
          long = len(s)
        }
        for i := 1; i <= long; i++ {
          ans = append(ans, l+long-i)
        }
        l += long
        h --
      }
    } else {
      if u == uint8('I') {
        long = strings.Index(s, "D")
        if long == -1 {
          long = len(s)
        }
        for i := 1; i <= long; i++ {
          ans = append(ans, h-long+i)
        }
        h -= long
      } else {
        long = strings.Index(s, "I")
        if long == -1 {
          long = len(s)
        }
        for i := 1; i <= long; i++ {
          ans = append(ans, l+long-i)
        }
        l += long
      }
    }
    //fmt.Printf("s=%s,ans=%v\n",s,ans)
    s = s[long:]
  }
  return ans
}

时间复杂度O(n*m),还行吧,在go组中执行用时击败100%,但是内存消耗过高。


相关文章
|
6月前
|
人工智能 自然语言处理 算法
Go语言统计字符串中每个字符出现的次数 — 简易频率分析器
本案例实现一个字符统计程序,支持中文、英文及数字,可统计用户输入文本中各字符的出现次数,并以整洁格式输出。内容涵盖应用场景、知识点讲解、代码实现与拓展练习,适合学习文本分析及Go语言基础编程。
|
存储 Go 索引
go语言中遍历字符串
go语言中遍历字符串
237 5
|
8月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
351 14
|
7月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
327 1
|
7月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
353 1
|
7月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
256 0
|
7月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
317 0
|
9月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
251 10
|
9月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
232 4
|
9月前
|
Go 索引
【LeetCode 热题100】394:字符串解码(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 394:字符串解码。题目要求对编码字符串如 `k[encoded_string]` 进行解码,其中 `encoded_string` 需重复 `k` 次。文章提供了两种解法:使用栈模拟和递归 DFS,并附有 Go 语言实现代码。栈解法通过数字栈与字符串栈记录状态,适合迭代;递归解法则利用函数调用处理嵌套结构,代码更简洁。两者时间复杂度均为 O(n),但递归需注意栈深度问题。文章还总结了解题注意事项及适用场景,帮助读者更好地掌握字符串嵌套解析技巧。
268 6