操作系统课程设计:新增Linux驱动程序(重制版)(三)

简介: 操作系统课程设计:新增Linux驱动程序(重制版)

7.2小组整合思路

题目1与题目4存在的共同点是:在进行内核的编译之前需要修改内核中的文件。题目2与题目3存在的共同点是:需要编译内核,在编译完成的新内核进行模块的编译。而题目5完全不涉及内核。

因此,整合的总体流程如下:首先修改内核源码文件中涉及到题目1与题目4的部分。接下来,进行长达1~2小时的编译内核、编译模块与安装新内核。然后,进入新的内核,传入题目2与题目3涉及到的源代码文件,安装并卸载相应的模块进行测试。最后,编译并测试题目5涉及到的源代码。

在本文的章节四中,本小组已经事先统一了用同一个版本的Linux发行版与同一个版本的Linux内核源码。因此,整合的过程得到了一定的简化。

题目1涉及到的内核源码的文件包括:

arch/x86/entry/syscalls/syscall_64.tbl

kernel/sys.c

include/linux/syscalls.h

题目4涉及到的内核源码的文件包括:

arch/x86/mm/fault.c

include/linux/mm.h

kernel/kallsyms.c

在替换了这6个文件后,按第四章节的流程操作,对内核进行重新编译。

进入新的内核。

在新的内核中,题目1需要使用程序对内核进行测试。

题目2涉及到的文件包括:super.c、sysfs.c、file.c、Makefile。将这4个文件放在同一个目录下,进行模块编译。

题目3涉及到的文件包括:zombotany_blkdev.c、Makefile。将这2个文件放在同一个目录下,进行模块编译。

题目4涉及到的文件包括:readpfcount.c、Makefile。将这2个文件放在同一个目录下,进行模块编译。利用模块的形式,对缺页中断次数进行了测试。

题目5涉及到的文件包括:share.c、read.c。这2个文件不涉及也不调用内核。在这2个文件中,就可以加入题目1设计到的系统调用。例如,可以系统调用,计算当前图书馆内已有人数的三次方。如图29所示。可以用gcc -c share.c -o share.out 和gcc -c read.c -o read.out直接编译运行。

其余运行结果不再贴图赘述。

7.3编译新内核时遇到的问题与解决思路

因为在完成个人的题目时,反复编译了内核,所以在整合小组工作并重新编译时出现了boot分区不够的情况,不能在boot分区安装新内核,如图30所示。运行df -hl,发现boot分区只开了300M,且空间即将耗尽。所以,在安装新内核之前需要先对boot分区进行扩容。

首先关机,创建新的磁盘,重新开机后将/boot分区取消挂载。对新的磁盘(nvme0n2)分区,执行命令fdist /dev/nvme0n2,创建一个新分区,全部采取默认选项。

运行lsblk命令,查看新磁盘的新分区。对新分区进行格式化 mkfs.ext4 /dev/nvme0n2p1

将旧内核复制到boot_old文件夹(cp -r /boot/ /boot_old),备份旧内核中的文件。之后,把boot分区挂载回来,挂载到新分区。mount /dev/nvme-n2p1 /boot。在挂载完成后,再把boot_old的备份文件复制回来。cp -r /boot_old/. /boot

将永久挂载写入到/etc/fstab里。先执行blkid查看所有分区的uuid。如图33。

打开/etc/fstab,找到nvme0n2p1的分区填入。加入记录:

UUID=5b624350-9fce-495d-934e-650f62cfe189 ext4 /boot defaults 0 1

保存并退出后更新挂载信息。mount -alsblk。可以看到,/boot分区被挂载到了有20GB的新磁盘上。

重新挂载/boot分区后,重新make install安装内核模块。但是,还需要运行grub2-mkconfig -o /boot/grub2/grub.cfg更新引导文件。否则,会出现如下情况:在旧内核中,/boot分区被正确地识别到并挂载到nvme0n2p1分区,但在新内核找不到/boot。更新引导文件后,新内核也能找到/boot分区。再次重启虚拟机,终于可以成功进入新内核。编译新内核时可能遇到的/boot分区不足的情况被通过这种办法成功得以解决。

编译安装新内核过程中还可能遇到的情况如图35:客户机操作系统已禁用CPU。此问题解决办法较为简单:在物理机开机时按f12进入bios,在bios中设置允许虚拟机。若已经设置允许虚拟机,则需要关掉windows defender或腾讯电脑管家或360。当虚拟机占用主机过多资源时就有可能也会出现该情况。

参考文献

[1] https://blog.csdn.net/cxy_chen/article/details/80998510

[2] https://blog.csdn.net/wys7250578/article/details/9045237

[3] https://blog.csdn.net/skywalker_123/article/details/102587813

[4]https://blog.csdn.net/m0_46362426/article/details/118879627

[5]https://forums.pvpgn.pro/viewtopic.php?id=2226

[6]https://stackoverflow.com/questions/61590926/how-to-install-gcc-g-9-on-centos-8-docker-centoslatest

[7]https://communities.vmware.com/t5/VMware-Workstation-Pro/Update-to-Workstation-14-1-2-fails-and-destroys-existing/td-p/2735925

源程序清单

Makefile

ifeq ($(KERNELRELEASE),)
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
modules:
  $(MAKE) -C $(KDIR) M=$(PWD) modules
modules_install:
  $(MAKE) -C $(KDIR) M=$(PWD) modules_install
clean:
  rm -rf *.o *.ko .depend *.mod.o *.mod.c Module.* modules.*
.PHONY:modules modules_install clean
else
  obj-m := zombotany_blkdev.o
endif

zombotany_blkdev.c

#include <linux/module.h>
#include <linux/blkdev.h>
#define SIMP_BLKDEV_DISKNAME "zombotany_blkdev"//设备名称
#define SIMP_BLKDEV_DEVICEMAJOR COMPAQ_SMART2_MAJOR //主设备号
#define SIMP_BLKDEV_BYTES (256*1024*1024)            // 块设备大小为256MB
#define SECTOR_SIZE_SHIFT 9//9个扇区
static struct gendisk * zombotany_blkdev_disk;// gendisk结构表示一个简单的磁盘设备
static struct block_device_operations  zombotany_blkdev_fops = { 
    .owner = THIS_MODULE,//设备主体
};
static struct request_queue * zombotany_blkdev_queue;//指向块设备请求队列的指针
unsigned char  zombotany_blkdev_data[SIMP_BLKDEV_BYTES];// 虚拟磁盘块设备的存储空间
//请求处理函数
static void  zombotany_blkdev_do_request(struct request_queue *q){
    struct request *req;// 正在处理的请求队列中的请求
    struct bio *req_bio;// 当前请求的bio
    struct bio_vec *bvec;// 当前请求的bio的段(segment)链表
    char *disk_mem;      // 需要读/写的磁盘区域
    char *buffer;        // 磁盘块设备的请求在内存中的缓冲区
    while((req = blk_fetch_request(q)) != NULL){//得到请求
        // 判断当前请求是否合法
        if((blk_rq_pos(req)<<SECTOR_SIZE_SHIFT) + blk_rq_bytes(req) > SIMP_BLKDEV_BYTES){//判断地址是否越界访问
            printk(KERN_ERR SIMP_BLKDEV_DISKNAME":bad request:block=%llu, count=%u\n",(unsigned long long)blk_rq_pos(req),blk_rq_sectors(req));//越界访问了,则输出
            blk_end_request_all(req, -EIO);
            continue;//获取下一请求
        }
        //获取需要操作的内存位置
        disk_mem =  zombotany_blkdev_data + (blk_rq_pos(req) << SECTOR_SIZE_SHIFT);
        req_bio = req->bio;// 获取当前请求的bio
        switch (rq_data_dir(req)) {  //判断请求的类型
        case READ:
            // 遍历req请求的bio链表
            while(req_bio != NULL){
                // for循环处理bio结构中的bio_vec结构体数组(bio_vec结构体数组代表一个完整的缓冲区)
                for(int i=0; i<req_bio->bi_vcnt; i++){
                    bvec = &(req_bio->bi_io_vec[i]);
                    buffer = kmap(bvec->bv_page) + bvec->bv_offset;
                    memcpy(buffer, disk_mem, bvec->bv_len);//把内存中数据复制到缓冲区
                    kunmap(bvec->bv_page);
                    disk_mem += bvec->bv_len;
                }
                req_bio = req_bio->bi_next;//请求链表下一个项目
            }
            __blk_end_request_all(req, 0);//被遍历完了
            break;
        case WRITE:
            while(req_bio != NULL){
                for(int i=0; i<req_bio->bi_vcnt; i++){
                    bvec = &(req_bio->bi_io_vec[i]);
                    buffer = kmap(bvec->bv_page) + bvec->bv_offset;
                    memcpy(disk_mem, buffer, bvec->bv_len);//把缓冲区中数据复制到内存
                    kunmap(bvec->bv_page);
                    disk_mem += bvec->bv_len;
                }
                req_bio = req_bio->bi_next;//请求链表下一个项目
            }
            __blk_end_request_all(req, 0);//请求链表遍历结束
            break;
        default:
            /* No default because rq_data_dir(req) is 1 bit */
            break;
        }
    }
}
//模块入口函数
static int __init  zombotany_blkdev_init(void){
    int ret;
    //添加设备之前,先申请设备的资源
     zombotany_blkdev_disk = alloc_disk(1);
    if(! zombotany_blkdev_disk){
        ret = -ENOMEM;
        goto err_alloc_disk;
    }
    //设置设备的有关属性(设备名,设备号,fops指针
    strcpy( zombotany_blkdev_disk->disk_name,SIMP_BLKDEV_DISKNAME);
     zombotany_blkdev_disk->major = SIMP_BLKDEV_DEVICEMAJOR;
     zombotany_blkdev_disk->first_minor = 0;
     zombotany_blkdev_disk->fops = & zombotany_blkdev_fops;
    //将块设备请求处理函数的地址传入blk_init_queue函数,初始化一个请求队列
     zombotany_blkdev_queue = blk_init_queue( zombotany_blkdev_do_request, NULL);
    if(! zombotany_blkdev_queue){
        ret = -ENOMEM;
        goto err_init_queue;
    }
     zombotany_blkdev_disk->queue =  zombotany_blkdev_queue;
  //初始化扇区数
    set_capacity( zombotany_blkdev_disk, SIMP_BLKDEV_BYTES>>9);
    //入口处添加磁盘块设备
    add_disk( zombotany_blkdev_disk);
    return 0;
    err_alloc_disk:
        return ret;
    err_init_queue:
        return ret;
}
//模块的出口函数
static void __exit  zombotany_blkdev_exit(void){
// 释放磁盘块设备
    del_gendisk( zombotany_blkdev_disk);
// 释放申请的设备资源
    put_disk( zombotany_blkdev_disk);   
// 清除请求队列
    blk_cleanup_queue( zombotany_blkdev_queue);
}
module_init( zombotany_blkdev_init);// 声明模块的入口
module_exit( zombotany_blkdev_exit);// 声明模块的出口
相关实践学习
CentOS 8迁移Anolis OS 8
Anolis OS 8在做出差异性开发同时,在生态上和依赖管理上保持跟CentOS 8.x兼容,本文为您介绍如何通过AOMS迁移工具实现CentOS 8.x到Anolis OS 8的迁移。
目录
打赏
0
0
0
0
54
分享
相关文章
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
【Linux】冯诺依曼体系与操作系统理解
本文深入浅出地讲解了计算机体系的两大核心概念:冯诺依曼体系结构与操作系统。冯诺依曼体系作为现代计算机的基础架构,通过中央处理器、存储器和输入输出设备协同工作,解决了硬件性能瓶颈问题。操作系统则是连接硬件与用户的桥梁,管理软硬件资源,提供运行环境。文章还详细解析了操作系统的分类、意义及管理方式,并重点阐述了系统调用的作用,为学习Linux系统编程打下坚实基础。适合希望深入了解计算机原理和技术内幕的读者。
29 1
Linux 操作系统
在 Linux 中,UID(用户 ID)是标识用户身份的重要概念。UID 唯一标识每个用户,通过 UID 可区分不同用户类别:UID 0 为超级用户,1-999 为系统用户,1000 及以上为普通用户。因此,正确选项为:UID 标识用户、可区分用户类别、普通用户 UID 大于 1000。
|
1月前
|
Linux 操作系统的诞生与发展历程
步探索与准备: 1991年初,林纳斯·托瓦兹开始在一台386sx兼容微机上学习minix操作系统。通过学习,他逐渐不能满足于minix系统的现有性能,并开始酝酿开发一个新的免费操作系统。
74 8
Linux 操作系统的诞生与发展历程
OS Copilot-操作系统智能助手-Linux新手小白的福音
OS Copilot 是阿里云推出的一款操作系统智能助手,专为Linux新手设计,支持自然语言问答、辅助命令执行和系统运维调优等功能。通过简单的命令行操作,用户可以快速获取所需信息并执行任务,极大提升了Linux系统的使用效率。安装步骤简单,只需在阿里云服务器上运行几条命令即可完成部署。使用过程中,OS Copilot不仅能帮助查找命令,还能处理文件和复杂场景,显著节省了查找资料的时间。体验中发现,部分输出格式和偶尔出现的英文提示有待优化,但整体非常实用,特别适合Linux初学者。
163 10
os-copilot在Alibaba Cloud Linux镜像下的安装与功能测试
我顺利使用了OS Copilot的 -t -f 功能,我的疑惑是在换行的时候就直接进行提问了,每次只能写一个问题,没法连续换行更有逻辑的输入问题。 我认为 -t 管道 功能有用 ,能解决环境问题的连续性操作。 我认为 -f 管道 功能有用 ,可以单独创建可连续性提问的task问题。 我认为 | 对文件直接理解在新的服务器理解有很大的帮助。 此外,我还有建议 可以在非 co 的环境下也能进行连续性的提问。
92 7
深入解析操作系统控制台:阿里云Alibaba Cloud Linux(Alinux)的运维利器
本文将详细介绍阿里云的Alibaba Cloud Linux操作系统控制台的功能和优势。
127 6
OS Copilot-操作系统智能助手-Linux新手小白的福音
OS Copilot是由阿里云推出的操作系统智能助手,专为Linux新手设计,支持自然语言问答、辅助命令执行等功能,极大提升了Linux系统的使用效率。用户只需通过简单的命令或自然语言描述问题,OS Copilot即可快速提供解决方案并执行相应操作。例如,查询磁盘使用量等常见任务变得轻松快捷。此外,它还支持从文件读取复杂任务定义,进一步简化了操作流程。虽然在某些模式下可能存在小问题,但总体上大大节省了学习和操作时间,提高了工作效率。
155 2
OS Copilot-操作系统智能助手-Linux新手小白的福音
云上体验最佳的服务器操作系统 - Alibaba Cloud Linux | 飞天技术沙龙-CentOS 迁移替换专场
本次方案的主题是云上体验最佳的服务器操作系统 - Alibaba Cloud Linux ,从 Alibaba Cloud Linux 的产生背景、产品优势以及云上用户使用它享受的技术红利等方面详细进行了介绍。同时,通过国内某社交平台、某快递企业、某手机客户大数据业务 3 大案例,成功助力客户实现弹性扩容能力提升、性能提升、降本增效。 1. 背景介绍 2. 产品介绍 3. 案例分享

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等