多层if如何优化, chatgpt告诉你

简介: 多层if如何优化, chatgpt告诉你
List<CustomerFinanceDTO> customerFinanceList = proFinanceInfo;
if (ObjectUtil.isNotEmpty(customerFinanceList) && customerFinanceList.size() > ACCOUNT_SIZE_ZERO) {
    for (CustomerFinanceDTO item : customerFinanceList) {
        if (reportId.equals(item.getCustomerFinanceId())) {
            boolean sendFlag = CreditUtils.checkValInCommonClass(
                new CreditModelCdsSecond.ProjectCdClass1(),
                requestDTO.getGradeModeLNo()
            );
            if (sendFlag) {
                projectValue01 = item.getProjectValue();
            }
        }
    }
}
相关文章
|
6月前
GPT-4 vs. ChatGPT:19个弱项问题(多步逻辑推理、概念间接关联)的横向对比
GPT-4在逻辑推理和概念关联上的准确率提升至100%,超越ChatGPT,其智力可能超过95%的人。在逻辑和多模态理解上有显著进步,但数数和某些逻辑推理仍是挑战。擅长处理成本计算和复杂情境,能建立概念间的间接关联,如遗忘与老龄化的联系。在数学和物理领域表现出色,但处理复杂间接关系和抽象概念时仍有局限。总体而言,GPT-4展现出超越人类智能的潜力,但仍需面对认知任务的挑战。![GPT-4进步示意](https://developer.aliyun.com/profile/oesouji3mdrog/highScore_1?spm=a2c6h.132)查看GPT-5教程,可访问我的个人主页介绍。
163 0
GPT-4 vs. ChatGPT:19个弱项问题(多步逻辑推理、概念间接关联)的横向对比
|
18天前
|
机器学习/深度学习 自然语言处理 算法
通过RAG增强大模型回答原本无法回答的问题
RAG(检索增强生成)是一种结合信息检索和文本生成技术的方法,旨在提升大规模语言模型处理特定问题的能力。通过先从大量文档中检索相关信息,再利用这些信息生成更准确的答案,RAG特别适用于需要最新数据或专业知识的场景,如医疗咨询、法律建议等。此方法不仅提高了答案的质量和准确性,还增强了系统的可扩展性和适应性。随着技术进步,RAG有望在更多领域发挥重要作用。
|
2月前
MAGICORE:基于多代理迭代的粗到细精炼框架,提升大语言模型推理质量
MAGICORE是一种多代理迭代框架,旨在改进大语言模型(LLM)的推理能力。该框架通过将问题分类为简单或困难,并分别为其应用粗粒度聚合或细粒度精炼,有效避免了过度精炼、错误定位及精炼不足等问题。MAGICORE包含Solver、Reviewer和Refiner三个角色,结合结果和过程奖励模型,实现有针对性的反馈和迭代精炼。实验结果显示,MAGICORE在多个数据集和模型上显著优于现有的聚合和精炼方法,提升了推理准确性和样本效率。
67 3
MAGICORE:基于多代理迭代的粗到细精炼框架,提升大语言模型推理质量
|
2月前
|
机器学习/深度学习 自然语言处理
如何让等变神经网络可解释性更强?试试将它分解成简单表示
【9月更文挑战第19天】等变神经网络在图像识别和自然语言处理中表现出色,但其复杂结构使其可解释性成为一个挑战。论文《等变神经网络和分段线性表示论》由Joel Gibson、Daniel Tubbenhauer和Geordie Williamson撰写,提出了一种基于群表示论的方法,将等变神经网络分解成简单表示,从而提升其可解释性。简单表示被视为群表示的“原子”,通过这一分解方法,可以更好地理解网络结构与功能。论文还展示了非线性激活函数如何产生分段线性映射,为解释等变神经网络提供了新工具。然而,该方法需要大量计算资源,并且可能无法完全揭示网络行为。
36 1
|
3月前
|
存储 并行计算
小技巧大功效,仅阅读两次提示让循环语言模型超越Transformer++
【8月更文挑战第27天】斯坦福与布法罗大学的研究显示,通过&quot;Just-Read-Twice&quot;(JRT)策略,循环语言模型(RNNs)在多项任务上的表现超越了行业标杆Transformer++模型。JRT策略让RNNs在处理信息时进行两次读取,有效解决长上下文记忆难题,显著提升了性能。实验覆盖FDA、SQUAD等多个任务,均取得明显成效。论文已发布于arXiv。
25 2
|
4月前
|
自然语言处理
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
|
6月前
|
机器学习/深度学习 自然语言处理 并行计算
【大模型】解释自我注意力的概念及其在LLM表现中的作用
【5月更文挑战第6天】【大模型】解释自我注意力的概念及其在LLM表现中的作用
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型开发:描述模型可解释性的重要性以及如何实现它。
模型可解释性在AI和机器学习中至关重要,尤其在金融风控等领域,它关乎信任、公平性和法规合规。通过建立信任、发现偏见、排查错误和满足法规要求,可解释性促进了模型的改进和社会接受度。研究者采用简单模型、局部和全局解释方法、模型可视化及原型/反例等策略提升模型透明度。这是一项结合算法、专业知识和伦理的跨学科挑战。
302 1
|
机器学习/深度学习 人工智能 算法
ChatGPT是如何训练得到的?通俗讲解
ChatGPT是如何训练得到的?通俗讲解
|
机器学习/深度学习 数据采集 人工智能
头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解
头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解
97 0