m索引OFDM调制解调系统的性能仿真分析

简介: m索引OFDM调制解调系统的性能仿真分析

1.算法描述

    随着无线通信技术的不断发展,人们对下一代移动通信系统提出了越来越高的要求。在这样的时代背景下,具有低峰均比,强频偏对抗能力和高能量效率的索引调制OFDM系统(Orthogonal Frequency Division Multiplexing with Index Modulation,OFDM-IM)逐渐引起学者们的关注。正交频分复用(orthogonalfrequencydivisionmultiplexing,ofdm)技术在第四代移动通信系统中扮演着重要的角色。它子载波之间的正交性使各个子信道所经历的衰落相对平坦,再通过引入循环前缀来降低符号间干扰,具有频谱利用率高、抗多径效应好等特点,并且快速傅里叶变换为其提供了一种简单、低成本的实现方式。

    基于索引调制的OFDM(OFDM-IM,OFDM with Index Modulation)技术被提出,在频率选择性衰落信道上提升了系统的分集增益,特别是在较低频谱效率场景下能够有效降低系统的误比特率。在OFDM-IM方法中,特殊的索引信息传输方式以及索引结构的设计对分集增益的提高,引发了广泛的关注。如何通过索引结构的设计,取得比OFDM更低的误比特率以及更高的频谱效率成为了索引调制OFDM研究方向上的热点。

    主要研究工作内容如下:

(1)针对OFDM中索引调制技术存在频谱效率较低的问题,本文提出了OFDM联合子块索引调制技术(OFDM-JS-IM,OFDM with Joint Subblock Index Modulation),将索引映射中被丢弃部分索引组合,在联合子块空间中进行了重复利用。仿真验证及理论分析表明,OFDM-JS-IM方法能够以轻微的误比特率性能损失为代价,有效提高OFDM-IM的频谱效率。

(2)针对索引结构与分集性能的关系进行了分析。由于OFDM-IM的特殊结构,索引比特的分集阶数高于一般的符号比特,使得OFDM-IM性能优于OFDM。然而,OFDM中的索引调制结构也仅仅能将部分比特的分集阶数提高至2。本文提出了OFDM全索引方法(OFDM with All Index Modulation,OFDM-AIM),不再使用低分集阶数的符号比特传输信息,而将所有信息以索引比特的方式传输,并提出了提高子块分集阶数的搜索算法,能够构建具有高分集阶数的合法子块集合。仿真结果表明,该方法能够有效提升系统的分集增益。

(3)基于上述OFDM-AIM技术,本文还提出了可变子块长度的子块设计辅助的OFDM-AIM。由于OFDM-AIM中子块长度决定了系统的最高分集阶数,因此可以适当提高子块长度以寻找更多较高分集阶数的子块,以提高分集增益。根据系统的频谱效率和计算复杂度要求,该方法能通过变化子块长度在实际应用中达到更好的性能权衡。

(4)分集阶数只是评价发射端信号的特性,而系统的误比特率性能不仅与分集阶数有关,还与不同子块符号间的欧式距离以及信道特性有关。针对该问题,本文将启发式算法中的遗传算法用于搜索具有最低误比特率的子块查找表。

    但是,在高速场景下,子信道间的正交性会受到多普勒频移的破坏而引起载波间干扰,并且ofdm多个子信道信号叠加也会导致较高的峰均比,这些缺点时ofdm不适用于高速场景。而基于索引调制的正交频分复用(ofdm-im)技术将空间调制技术与传统的正交频分复用(ofdm)技术相结合,其思想是不仅激活子载波可以传输调制信号,而且可以传输其静默子载波的位置信息,从而弥补静默子载波不发送数据造成的损失。静默子载波的存在使得多普勒频移所带来的子载波间的干扰降低,使得系统对频偏不敏感。同时,大量静默子载波的存在又降低了整个输出符号的峰均比,这些优点使得索引调制技术成为5g研究热点之一。

   OFDM-IM是一种多载波索引调制技术,其在信号的频域加入了子载波块的功能,将多个子载波组合成一个子载波块,一个子载波块作为一个调制单元。每次发送过程中,只选择子载波块中的一个或者部分子载波进行激活并发送信息,其功能类似于基于频域的空间索引调制随机数。OFDM-IM技术的基本结构如下图所示:

image.png

   OFDM-IM技术和传统的OFDM技术不同之处在于其在调制阶段,加入了索引调制步骤,根据索引调制比特信息,通过映射关系表,选择子载波进行激活并发送相应的比特数据,而未被选择的子载波则处于静默状态。这些索引调制比特数据同时补偿未被激活的静默子载波产生的频谱利用率低的问题。而在OFDM-IM接收部分,则通过子载波块的检测模块来恢复出索引信息和数据符号信息。

2.png
3.png

     如上所示,OFDM-IM调制系统主要有两种调制方式,一种是相邻分块的调制方式(如图1所示),一种是交织调制方式(如图2所示)。从图1和图2可知,基于相邻分块的调制方式,其主要通过子载波以相邻的方式进行分块划分,而基于交织分块的调制方式,其通过在频域上加入一个交织深度为G的等间隔交织器来实现分块划分。

   OFDM-IM索引调制系统相对于传统的OFDM系统而言,其最要区别在于被激活的子载波数量被降低,因此其对子载波数量相对于OFDM系统而言较为稀疏,那么其对频偏更加的不敏感。另外一方面,通过OFDM-IM索引调制技术,则可以在传统OFDM调制系统的基础上加入一个调制域,补偿未被激活的子载波带来的频谱利用率方面的损失,从而起到提高频谱利用率,提升系统误码率性能的需求。

2.仿真效果预览
matlab2022a仿真结果如下:

4.png
5.png
6.png
7.png
8.png

3.MATLAB核心程序

G         = 4;  %2个子载波作为一个块
Nlen      = 15000;%数据仿真长度
Ncp       = 8;%插入CP长度
Tdat0     = floor(rand(1,Nlen*Nsub)*2);
%产生索引比特
index     = floor(rand(1,Nlen*Nsub/2)*2);
 
Tdat      = reshape(Tdat0,[1,Nlen*Nsub]); 
%Modulate,下面几行都是调制
Dat_Qam   = reshape(Tdat,2,Nlen*Nsub/2).';
Dat_Qam2  = bi2de(Dat_Qam,2,'left-msb');
Mod_Table = [-1-i -1+i 1-i 1+i];%
SymQAM    = Mod_Table(Dat_Qam2+1);
XSymQAM   = conj([reshape(SymQAM,[G,length(SymQAM)/G])]');
Xindex    = [reshape(index,[G,length(SymQAM)/G])]';
X2        = zeros(size(Xindex,1),2*size(Xindex,2));
for jj=1:size(Xindex,1)
    %选择前面4个作为索引比特
    IMtable  = Xindex(jj,:);
    S        = XSymQAM(jj,:);
    for j = 1:length(S)
        if IMtable(j) == 1
           X2(jj,2*j-1) = S(j);
           X2(jj,2*j)   = 0;
        else
           X2(jj,2*j-1) = 0;
           X2(jj,2*j)   = S(j);
        end
    end
end
X3 = [reshape(conj(X2'),[1,size(X2,1)*size(X2,2)])];
 
%IFFT变换
 
dat_ifft0= ifft(X3); 
% %Add cyclic prefix,加入循环间隔
dat_ifft1_cp3= [dat_ifft0(1:Ncp),dat_ifft0];
%上变频
ff           = 5e7;
dat_ifft1_cp3        = dat_ifft1_cp3.*exp(sqrt(-1)*2*pi*ff*([1:length(dat_ifft1_cp3)]));
 
 
% Add the AWGN,加入高斯白噪声
%channel,定一个多径信道
H_channel2   = dat_ifft1_cp3;
Ch           = [1 1/16];
H_channel3   = filter(Ch,1,H_channel2);
snr           = SNR + 10*log10(log2(2));
dat_ifft1_cp3 = awgn(H_channel2,snr,'measured');
%下变频
dat_ifft1_cp3 = dat_ifft1_cp3.*exp(-sqrt(-1)*2*pi*ff*[1:length(dat_ifft1_cp3)]);
 
%remove,删除循环间隔
dat_ifft1_cp3(1:Ncp)=[];
dat_fft1  = fft(dat_ifft1_cp3); 
dat_fft1b = conj([reshape(dat_fft1,[2*G,length(dat_fft1)/G/2])]');
%提取索引位置和数据
IMdatas=[];
IMindxs=[];
for jj=1:size(Xindex,1)
    tmps   = dat_fft1b(jj,:);
    IMdata = [];
    IMindx = [];
    for j = 1:length(tmps)/2 
        data = tmps(2*j-1:2*j);
        if abs(data(1))>=abs(data(2))%01
           IMdata(j) = [data(1)];
           IMindx(j) = [1]; 
        end
        if abs(data(1))<=abs(data(2))%10
           IMdata(j) = [data(2)];
           IMindx(j) = [0]; 
        end
    end
     
    IMdatas(jj,:)=IMdata;
    IMindxs(jj,:)=IMindx;
end
 
相关文章
|
15天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
114 69
|
20天前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
53 26
|
23天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
46 3
|
26天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
50 8
|
1月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
52 11
|
3月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
62 3
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
81 0
|
4月前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
145 2
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
78 5
|
4月前
|
5G 数据安全/隐私保护
DSSS、CCK 和 OFDM 调制方案
【8月更文挑战第23天】
697 0