m基于高阶累积量和信号子空间的信噪比估计方法的matlab仿真

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: m基于高阶累积量和信号子空间的信噪比估计方法的matlab仿真

1.算法描述

   随着信息技术的飞速发展,信息战逐渐成为战争的一个重要方式。因此,掌握战场的信息控制权是赢得战争的重要因素。在信息战中,为了干扰和破坏对方的通信系统,首先需要获得对方通信系统的通信方式、通信系统的参数等信息。因此,需要对对方的通信信息进行分析和参数估计,从而达到干扰敌对通信系统的目的。在通信信号的参数估计过程中,对信号的信噪比估计是一个重要环节,通过对信号的信噪比估计奠定了信号的调制识别,解调,译码的基础。因此,研究信噪比估计方法最优十分重要的意义。

   目前,关于信噪比估计方法有较多成熟的技术,根据其估计方式,现有的技术可以分为两大类:第一种是基于辅助数据的估计方法,通过在发送数据中周期性的插入可识别的训练数据,并在接收端根据训练数据进行信噪比估计的方法。第二种是盲估计方法,这种方法无需借助辅助数据。通信信号信噪比的盲估计是指在不获取通信先验信息的情况下对信号的信噪比进行估计。在军事对抗通信中,往往无法获取敌方通信的先验信息,因此只能采用信噪比的盲估计。

    基于信号子空间(SB,subspace-based)的信噪比盲估计算法,其无需借助任何信道的参数信息,直接通过特征值分解的方式,将接收信号中的有效信号与噪声干扰相分离,从而计算出信噪比的估计值。因此,信号子空间的信噪比盲估计算法具有较强的信道适应能力,具有较为广泛的应用前景。

   针对基于高阶累积量的信噪比盲估计方法和基于信号子空间的信噪比盲估计方法进行研究。其中,基于高阶累积量的信噪比盲估计方法,其主要原理是通过计算接收信号的高阶累积量来获得信号矩,继而估计出信号能量和噪声能量,并最终获得信噪比的估计值。基于信号子空间的信噪比盲估计方法,其主要通过计算信号的协方差,将信号和噪声进行分离,并得到信噪比估计值的方法。最后通过MATLAB仿真软件对基于高阶累积量的信噪比盲估计方法和基于信号子空间的信噪比盲估计方法两种算法进行仿真分析。

1.png
2.png
3.png

   高阶统计量,通常是指信号的高阶矩,高阶累积量等信号统计信息的统称。在这些高阶统计量中,高阶累积量具有十分重要的重用,不同阶数的累积量可以反映出信号的不同特征,因此高阶累积量往往应用在信号分类,信号调制方式识别等领域。高阶累积量中的二阶累积量和四阶累积量可以有效抑制高斯白噪声的干扰,且对相位偏移具有一定的容错能力,其数学表达式为: 

4.png
5.png

关于信噪比参数估计主要做了如下几个方面的研究。

第一、研究了基于高阶累积量的信噪比盲估计法和基于信号子空间信噪比盲估计法的基本原理。其中,高阶累积量的原理是通过计算信号矩的方式获得信号能量与噪声能量的估计值。信号子空间法的原理是通过对信号协方差矩阵的分解来分离信号与噪声,从而得到信号的信噪比估计值。

第二、通过MATLAB对高阶累积量信噪比估计法与信号子空间信噪比估计法进行了性能分析。分别分析了高阶累积量信噪比估计法与信号子空间信噪比估计法的性能、输入信号长度对信噪比估计结果的影响分析、不同采样频率对信噪比估计结果的影响分析、不同频偏对信噪比估计结果的影响分析、定时误差对信噪比估计结果的影响分析。仿真实验表明信号子空间信噪比估计法性能优于高阶累积量信噪比估计法。

2.仿真效果预览
matlab2022a仿真结果如下:
6.png
7.png
8.png

3.MATLAB核心程序

clear;
close all;
warning off;
 
%MPSK调制
%参数说明
% y         输出序列
% x         输入序列
% fc        载波频率
% fs        采样频率
% rc        码元速率
% M         调制模式M=2,4,8
 
x      = rand(1,200)>=0.5;
fc     = 16e6;
fs     = 4*fc;
rc     = 2e6;
M      = 4;
detafy = 0*pi/6;
 
[y0,y_test] = func_MPSKgen(x,fc,fs,rc,M,detafy);
 
%%
%通过信号子空间估计信噪比
%通过高阶累积量估计信噪比
SNR    = [0:0.5:20];
R1     = zeros(size(SNR));
R2     = zeros(size(SNR));
for sj = 1:length(SNR)
    sj
    y         = awgn(y0,SNR(sj),'measured');
    [c21,c42] = func_csum(y);%高阶累积量
    SNRset1   = sqrt(abs(c42)/2)/(c21-0.965*sqrt(abs(c42)))+4;
    
    SNRset2   = func_snr_est(y);
    R1(sj)    = SNRset1;
    R2(sj)    = SNRset2;
end
 
figure;
subplot(121)
plot(SNR,SNR,'r');
hold on
plot(SNR,R1,'o');
grid on
xlabel('SNR');
ylabel('高阶累积量');
legend('标准SNR','估计SNR');
title('高阶累积量估计信噪比');
subplot(122)
plot(SNR,SNR,'r');
hold on
plot(SNR,R2,'o');
grid on
xlabel('SNR');
ylabel('高阶累积量');
legend('标准SNR','估计SNR');
title('信号子空间估计信噪比');
01_151m
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
101 80
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
25 16
|
7天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
225 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章