TPS、并发数与线程数,傻傻分不清楚?

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: TPS、并发数与线程数,傻傻分不清楚?

640.png

最近遇到了两个关于性能测试的场景,发现有三个很多人理不清楚的概念:TPS、并发数及线程数。这三者到底有什么关系呢?其实概念是相对简单的,但是在使用的时候,往往会有很多混淆的情况出现。

先说定义:

TPS:单位时间(每秒)处理的事务数。

并发数:同一时刻系统同时处理的请求数(相对并发,绝对并发)。

线程数:一般情况下,指是的虚拟用户数。

你看,是不是很清晰?



1

两个场景


场景一:登录接口能够承受秒级 1000 并发。

那么,这里的并发是TPS?还是并发数?还是线程数?如果是你,你会如何解读呢?说说个人的理解:一般情况下,在做性能测试时,都不会去强调并发的概念。因为现实的场景中,除了秒杀、整点开抢等几类特殊的场景外,都不会进行狭义上的并发测试。所以,这里的1000并发,应该指的是TPS为1000。

 

场景二:已知TPS是1000,如何估算出系统支持的最大在线用户数?

这个是无法通过理论知识来估算出来的。因为这两者本身就没有什么直接的关系。用户在线,并不一定产生请求,又或者这些请求也不是我们要测试的场景。所以请求那些面试官或者产品经理能否尊重下性能测试?不要再问这些没有逻辑的问题?如果真想了解如何评估系统容量,请系统的学习下相关知识,而不是拿一个TPS强人所难。



2

澄清三者关系


并发数较好说,分为强并发和弱并发。所谓的强并发指的是单位时间内,同时请求的数量。类似的场景就是秒杀活动或者整点活动这类的场景。而我们通常说的并发,指的都是一段时间内(可以是秒级,也可以是分钟级的),系统能够处理的数据总量。这更符合我们的实际场景。

 

基于上面的概念,TPS = Vu(总请求数)/Time(响应时间+思考时间),(这里暂不考虑网络传输的时间,思考时间也可以忽略吧,你们的脚本会考虑这些么?复杂问题简单化)。而Vu(总请求数)是怎么来的?

 

我们在模拟大批量的请求时,不太可能自己手动去点。所以需要借助工具来模拟。这就涉及到了线程数。通常情况下,一个线程数代表一个用户,在我们计划的执行时间或者执行次数下,向服务器发起请求。所以线程数只是我们模拟请求的概念,和实际的性能问题没有直接的关系,服务端只关心在一段时间内,处理了多少请求,并不关心这些请求是从哪里来的。如果你的负载机性能足够好,那么单位时间内,10000个请求,你可以用100个线程执行100次,也可以用1000个线程执行10次。这完全是负载机的问题,虽然达到服务端的时间会有微小的差异,但基本上可以忽略。


3

TPS与响应时间


其实,我们在描述系统的性能能力时,只说TPS是不够的。还需要考虑到响应时间和系统资源使用率,系统资源使用率在没太大瓶颈的前提下,可以不谈,但是不谈响应时间就不应该了。例如,有两个系统,TPS都是1000,但A系统的响应时间是0.5S,B系统的响应时间是2S,你觉得哪个系统的性能好?明显可以看出,A系统的TPS还有很大的提升空间嘛。就像你能考100分,是你努力的结果,而学霸考100分是因为卷面只有100分。对于A系统,应该继续往上压,找出更好的TPS,而对于B系统,差不多要进行调优了。



4

TPS中的T


一般情况下,我们在讲TPS时,都是讲单接口的TPS,也可以是QPS(每秒查询事务数)。但是在实际的工作场景中,某一个T(Transactions)都会有由若干个接口共同完成。很多性能测试工具,都提供了自定义Transactions的功能。因为这个Transactions才是描述客户行为的真实场景。所以在性能测试报告中,我们需要告诉用户你是如何定义Transactions的。不同的定义方法,TPS会有较大的差异。不能为了追求数值上的好看,而忽略了真实场景。



5

小结


理清基础的概念,有助于指导我们在真实场景下的落地实践。不要过于纠结并发数,这个指标更多的是体现负载机的性能,通过TPS 结合响应时间,才能更好地反馈系统的性能问题。同时,性能测试是个系统的专项工程,它有自己的方法论和评估体系,需要从业者更深入地了解和学习,而不是为了几个指标去做性能测试。别人可能因为不专业,所以不清楚,但我们是从业者,应该有能力去帮助产品或者客户澄清这些疑问,而不是听之任之。


6

预告

本周三(4月13号)晚上9点,我将会和老张、CC一起聊聊质量内建的话题,欢迎大家预约收看


相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
3月前
|
并行计算 Java 数据处理
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
279 0
|
2月前
|
安全
List并发线程安全问题
【10月更文挑战第21天】`List` 并发线程安全问题是多线程编程中一个非常重要的问题,需要我们认真对待和处理。只有通过不断地学习和实践,我们才能更好地掌握多线程编程的技巧和方法,提高程序的性能和稳定性。
239 59
|
2月前
|
安全 Java
线程安全的艺术:确保并发程序的正确性
在多线程环境中,确保线程安全是编程中的一个核心挑战。线程安全问题可能导致数据不一致、程序崩溃甚至安全漏洞。本文将分享如何确保线程安全,探讨不同的技术策略和最佳实践。
53 6
|
2月前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
73 6
|
2月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
5月前
|
Java 开发者
解锁并发编程新姿势!深度揭秘AQS独占锁&ReentrantLock重入锁奥秘,Condition条件变量让你玩转线程协作,秒变并发大神!
【8月更文挑战第4天】AQS是Java并发编程的核心框架,为锁和同步器提供基础结构。ReentrantLock基于AQS实现可重入互斥锁,比`synchronized`更灵活,支持可中断锁获取及超时控制。通过维护计数器实现锁的重入性。Condition接口允许ReentrantLock创建多个条件变量,支持细粒度线程协作,超越了传统`wait`/`notify`机制,助力开发者构建高效可靠的并发应用。
100 0
|
2月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
3月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
41 1
|
5月前
|
算法 Java
JUC(1)线程和进程、并发和并行、线程的状态、lock锁、生产者和消费者问题
该博客文章综合介绍了Java并发编程的基础知识,包括线程与进程的区别、并发与并行的概念、线程的生命周期状态、`sleep`与`wait`方法的差异、`Lock`接口及其实现类与`synchronized`关键字的对比,以及生产者和消费者问题的解决方案和使用`Condition`对象替代`synchronized`关键字的方法。
JUC(1)线程和进程、并发和并行、线程的状态、lock锁、生产者和消费者问题
|
4月前
|
网络协议 C语言
C语言 网络编程(十四)并发的TCP服务端-以线程完成功能
这段代码实现了一个基于TCP协议的多线程服务器和客户端程序,服务器端通过为每个客户端创建独立的线程来处理并发请求,解决了粘包问题并支持不定长数据传输。服务器监听在IP地址`172.17.140.183`的`8080`端口上,接收客户端发来的数据,并将接收到的消息添加“-回传”后返回给客户端。客户端则可以循环输入并发送数据,同时接收服务器回传的信息。当输入“exit”时,客户端会结束与服务器的通信并关闭连接。