【数组与链表算法】矩阵算法在程序中常见的简单应用 | C++

简介: 数组与链表都是相当重要的结构化数据类型,也都是典型线性表的应用。线性表用于计算机中的数据存储结构,按照内存存储的方式基本上可以分为以下两种:静态数据结构和动态数据结构。数组类型就是一种典型的静态数据结构,动态数据结构又称为链表。在我前面的算法系列文章都细致的对二者的使用方法做过讲解。

前言

       数组与链表都是相当重要的结构化数据类型,也都是典型线性表的应用。线性表用于计算机中的数据存储结构,按照内存存储的方式基本上可以分为以下两种:静态数据结构和动态数据结构。数组类型就是一种典型的静态数据结构,动态数据结构又称为链表。在我前面的算法系列文章都细致的对二者的使用方法做过讲解。

矩阵算法与深度学习

       从数学的角度来看,矩阵在计算机中是以二维数组的形式来展现的。在三维图形学中,矩阵也被经常性的使用,因为它可以表示模型数据的投影,扩大,缩小等三维运算。深度学习是目前相当热门的技术和话题,它与机器学习等技术类属于人工智能的一个分支,也是具有层次性的机器学习法。线性代数在深度学习中发挥了它强大的数学能力,在深度学习中我们常常用大量的矩阵运算来提高计算效率。在GPU(图形处理器)的内部,它就是以向量和矩阵元素为基础的,大量的矩阵运算可以分配给数众多的内核同步去进行处理,从而使人工智能领域进入更实用性的阶段。深度学习源自于类神经网络模型,它结合了大量的运算资源和神经网络框架,让机器像人类大脑那样通过大量的数据信息来进行神经网络化的深度学习。就像前几年的人工智能围棋程序AlphaGo就展现出了它的强大生命力。

一、矩阵相加

1.具体情况

       矩阵的相加运算较为简单,前提是相加的几个矩阵具有相同的行列数,从而相加后的结果矩阵与原来矩阵的行列数也是相同的。具体如下图所示:

2.范例程序:用程序代码对随机输入的两个矩阵进行相加。

3.代码展示:

#include<iostream>
using namespace std;
#define row 4   //事先声明矩阵的行数
#define col 4 //事先声明矩阵的列数
class matrix {
public:
  int A[row][col];
  int B[row][col];
  int record[row][col];
  void matrix_add() {
  for (int i = 0; i < row; i++)
    for (int j = 0; j < col; j++)
    record[i][j] = A[i][j] + B[i][j];
  }
  void showresult() {
  cout << "两矩阵相加之和如下" << endl;
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < col; j++) {
    cout << record[i][j] << " ";
    }
    cout << endl;
  }
  }
};
void text()
{
  matrix m;
  cout << "请输入矩阵A" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.A[i][j];
  cout << "请输入矩阵B" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.B[i][j];
  m.matrix_add();
  m.showresult();
}
int main()
{
  text();
}

4.结果展示:


、矩阵相乘

1.具体情况

       两个矩阵A与B的相乘受到了一些条件的限制。首先必须符合A为一个m×n的矩阵,B为一个n×p的矩阵,A×B后的结果成为一个m×p的矩阵C,具体如下图所示:


2.范例程序:用程序代码去实现三个随机输入矩阵的相乘。

3.代码展示:

#include<iostream>
using namespace std;
#define row 3   //事先声明矩阵的行数
#define col 3 //事先声明矩阵的列数
class matrix {
public:
  int A[row][col];
  int B[row][col];
  int C[row][col];
  int record[row][col];
  int sum;
  void matrix_mul() {
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < col; j++) {
    int m = 0,n=0;
    record[i][j]=A[i][m] * B[n][j] + A[i][m+1] * B[n+1][j] + A[i][m+2] * B[n+2][j];
    }
  }
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < col; j++) {
    int m = 0, n = 0;
    record[i][j] = record[i][m] * C[n][j] + record[i][m+1] * C[n+1][j] + record[i][m+2] * C[n+2][j];
    }
  }
  }
  void showresult() {
  cout << "三矩阵相乘结果如下" << endl;
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < col; j++) {
    cout << record[i][j] << " ";
    }
    cout << endl;
  }
  }
};
void text()
{
  matrix m;
  cout << "请输入矩阵A" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.A[i][j];
  cout << "请输入矩阵B" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.B[i][j];
  cout << "请输入矩阵C" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.C[i][j];
  m.matrix_mul();
  m.showresult();
}
int main()
{
  text();
}

4.结果展示:

、矩阵转置

1.具体情况

       转置矩阵就是把原矩阵的行坐标元素与列坐标元素进行相互调换。具体如下图所示:



2.范例程序:用程序代码去输出随机输入矩阵的转置矩阵。

3.代码展示:

#include<iostream>
using namespace std;
#define row 4   //事先声明矩阵的行数
#define col 4 //事先声明矩阵的列数
class matrix {
public:
  int A[row][col];
  int record[row][col];
  void matrix_tran() {
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < col; j++) {
    record[j][i] = A[i][j];
    }
  }
  }
  void showresult() {
  cout << "输入矩阵的转置结果如下" << endl;
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < col; j++) {
    cout << record[i][j] << " ";
    }
    cout << endl;
  }
  }
};
void text()
{
  matrix m;
  cout << "请输入矩阵" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.A[i][j];
  m.matrix_tran();
  m.showresult();
}
int main()
{
  text();
}

4.结果展示:

、稀疏矩阵

1.具体情况

       稀疏矩阵就是指一个矩阵中的大部分元素为0的一种特殊矩阵。因为稀疏矩阵中大部分元素都是0,所以实际存储的数据项少,如果在计算机中以传统的方式来存储稀疏矩阵,就会浪费极大的计算机内存。在这里将会用到三项式型的数据结构来存储稀疏矩阵,其中A(0,1):表示该稀疏矩阵的行数;A(0,2):表示该稀疏矩阵的列数;A(0,3):表示此稀疏矩阵中非零项的总数;另外,每一个非零项以(i,j,item-value)来表示。其中i表示此矩阵中非零项所在的行数,j表示非零项所在的列数,item-value表示该非零项的值。具体情况如下图所示:


2.范例程序:用程序代码去输出一个随机输入稀疏矩阵的三项式下的压缩结果。

3.代码展示:

#include<iostream>
using namespace std;
#define row 8   //稀疏矩阵的行数
#define col 9 //稀疏矩阵的列数
#define notzero 8   //稀疏矩阵中不为0的数据个数
class matrix {
public:
  int sparse[row][col];   
  int compress[notzero][3];
  void matrix_sparse() {
  compress[0][0] = row;
  compress[0][1] = col;
  compress[0][2] = notzero;
  cout << "三项式下矩阵的压缩结果如下" << endl;
  cout << compress[0][0] << " " << compress[0][1] << " " << compress[0][2] << endl;
  for (int i = 0,k=1; i < row; i++,k++) {
    int m = 0;
    for (int j = 0; j < col; j++) {
    if (sparse[i][j] != 0)
    {
      compress[k][m] = i;
      compress[k][m + 1] = j;
      compress[k][m + 2] = sparse[i][j];
      cout << compress[k][m] <<" "<< compress[k][m + 1] <<" "<< compress[k][m + 2] << endl;
    }
    }
  }
  }
};
void text()
{
  matrix m;
  cout << "请输入稀疏矩阵" << endl;
  for (int i = 0; i < row; i++)
  for (int j = 0; j < col; j++)
    cin >> m.sparse[i][j];
  m.matrix_sparse();
}
int main()
{
  text();
}

总结

       矩阵是高等代数学中的常见工具,在物理学,计算机科学等等的领域它都有着非常重要的应用。在上面我们只介绍了一些简单的矩阵运算实例,其实矩阵的运算和矩阵的类别有很多很多,它们都可以尝试用代码在程序中进行模拟实现。


目录
相关文章
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
44 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
150 63
|
20天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
30天前
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
|
1月前
|
存储 程序员 编译器
简述 C、C++程序编译的内存分配情况
在C和C++程序编译过程中,内存被划分为几个区域进行分配:代码区存储常量和执行指令;全局/静态变量区存放全局变量及静态变量;栈区管理函数参数、局部变量等;堆区则用于动态分配内存,由程序员控制释放,共同支撑着程序运行时的数据存储与处理需求。
114 21
|
1月前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
38 1
|
1月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
81 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
1月前
|
算法 安全 物联网
如何应用SM2算法进行身份认证
【10月更文挑战第5天】如何应用SM2算法进行身份认证
74 1
|
1月前
|
存储 算法 安全
SM2算法的应用场景有哪些?
【10月更文挑战第5天】SM2算法的应用场景有哪些?
100 1
|
1月前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
31 1
下一篇
无影云桌面