IoT设备数据的存储、解析和价值挖掘实践

简介: 本实践以一个道路交通场景下设备运营管理的真实需求为背景来介绍如何使用物联网平台的数据服务完成对设备数据的存储、备份、预处理和深度分析,以达到企业经营提效的效果。


业务背景

随着物联网技术的快速发展成熟,物联网设备从一开始的传感器类感知设备向智能化设备升级,传统企业也开始将自身设备产生的数据作为企业的重要资产进行管理,如何稳妥的存储和备份这些设备数据资产,并在关键问题出现时进行回溯,以及通过对这些设备数据的深度分析来帮助企业实现经营提效变的尤为关键。

本实践以一个道路交通场景下设备运营管理的真实需求为背景来介绍如何使用物联网平台的数据服务完成对设备数据的存储、备份、预处理和深度分析,以达到企业经营提效的效果。


业务问题

设备数据量大,存储成本过高

当企业的设备规模达到十万甚至百万以上时,设备实时产生的数据量会非常大,如果企业有对数据长周期存储和追溯的需求,产生的数据存储成本会非常高,同时设备数据量大了以后也会对数据读写的性能和稳定性造成影响,带来额外的资源和运维成本。

设备种类繁多,数据格式不统一

道路交通场景下的设备种类丰富多样,如一体化锥桶、一体化快速封路器、收费站主动预警灯、车载预警LED屏等,不同类型的设备可能是由不同的生产商提供或者由不同的技术团队开发的,设备上报的数据格式千差万别难以统一,存储也无法实现标准化、结构化的存储,为企业后续的数据处理、分析和治理带来了很大的困扰。

缺少数据分析,价值难以挖掘

企业将设备数据采集上来以后,缺少专业的分析工具,无法对设备数据进行多维度的聚合分析,隐藏在数据中的业务价值也就难以挖掘,导致设备数据上云反而徒增了成本,没有起到经营提效的效果,也没有真正实现企业进行设备智能化升级的业务目标。


最佳实践


数据存储/备份 - 实现设备数据冷热分离,大幅降低存储成本


阿里云物联网平台提供了设备数据存储和备份的完整解决方案,减少了数据流转和中间存储带来的额外成本开销和架构复杂度。同时基于阿里云强大成熟的云计算底座,支持可扩展的海量数据存储、超高的数据压缩比和冷热数据存储分离等能力,可极大降低数据存储和备份的成本。


操作步骤概要

1.进入物联网平台控制台,开通企业版实例,和数据服务相关的是如下4个规格。

控制台地址:https://iot.console.aliyun.com

1.png

2.png

开通完成后,点击企业版实例卡片进入实例详情页,再点击数据服务进入数据相关的功能页。

3.png2.进入数据服务-数据存储的热数据存储功能页,实时保存设备上报的时序数据。

4.png

l  创建热数据存储规则

5.pngl  配置数据源Topic(支持通配)

6.pngl  配置自定义存储脚本

7.pngl  启动热数据存储规则

8.png3.进入数据服务-数据接入功能页,开启产品级别的冷数据备份,低成本长周期保存设备数据。

9.png

l  配置产品备份(会备份产品下所有设备的数据)

10.png4.进入数据服务-数据存储的冷数据存储功能页,查看产品备份任务状态。

11.png

l  查看产品备份状态

12.png


相关产品文档

如您想要了解更细节的产品功能使用指南,可以访问物联网平台的官网产品文档。

l  热数据存储:https://help.aliyun.com/document_detail/464047.html

l  冷数据备份:https://help.aliyun.com/document_detail/188662.htm

l  冷数据配置:https://help.aliyun.com/document_detail/464053.html


数据解析 - 实现不同类型设备异构数据的统一化和预处理


IoT设备数据比起IT数据有如下三个特点:第一个特点是IoT数据是时序的,通常是基于时间范围分析,而且随着时间流逝数据价值衰减更明显,特别是监控场景下,对数据处理的实时性要求高;第二个特点是数据质量不稳定,设备上报的数据可能会受所处网络或者复杂工况影响,与典型的互联网数据对比往往需要进行数据预处理,比如插值计算和降采样等;第三个特点是碎片化比较严重,不同类型的设备或者同一类型不同生产商的设备在数据格式的定义上都完成不一样,给后续的数据处理带来了很大的麻烦。
阿里云物联网平台针对以上IoT数据的特点,提供了组件式的数据解析服务,包括可自定义解析脚本的数据格式转换,以及窗口聚合、超时插值、相邻消息计算、函数转化等内置算子,助力客户快速完成对设备数据的预处理。


操作步骤概要

1.进入数据服务-数据解析功能页,创建数据解析任务。

13.png14.png2.点击查看进入任务编辑画布,配置数据源节点,选择设备上报数据的Topic(支持通配)。

15.png3.编写自定义解析脚本(源节点需要将数据格式选择为原始数据),对设备数据进行处理。16.png17.png除了可在自定义节点编写数据解析脚本外,也可以在数据源节点配置其他类型数据格式的转换,如下图所示。18.png

4.配置数据目标节点,将解析后的数据写入自定义存储表(解析后的数据字段需要和自定义存储表中的一致)。

19.png5.配置完成后,将数据解析任务启动并发布上线。
20.png

21.png


相关产品文档

如您想要了解更细节的产品功能使用指南,可以访问物联网平台的官网产品文档。
数据解析:
https://help.aliyun.com/document_detail/307080.html


分析洞察 - 实现设备数据的实时和离线分析,深度挖掘业务价值


设备数据经过数据解析并输出到自定义存储表后,可以使用SQL开发工作台来分析这些数据,比如设备新增/活跃分析、设备工况和经营统计等,深度挖掘设备数据的业务价值。

分析洞察的结果配置为自定义服务API后,可以被客户的业务系统集成调用,客户只需专注于业务开发,无需关注设备数据的存储、备份、分析和API开放等技术细节,大大加快了业务应用的开发。

 

操作步骤概要

1.进入数据服务-分析洞察功能页,创建SQL分析任务,再点击进入SQL开发工作台。

22.png23.png2.SQL开发工作台编写SQL语句,对自定义存储表中的设备数据进行深度分析。

24.png3.将分析后的数据存入另一张自定义存储表。
25.png4.进入数据服务-数据应用功能页,创建自定义服务API,客户业务系统可通过SDK查询分析结果。

26.png27.png28.png


数据API地址:https://help.aliyun.com/document_detail/135195.html

SDK下载地址:https://help.aliyun.com/document_detail/386372.html


相关产品文档

如您想要了解更细节的产品功能使用指南,可以访问物联网平台的官网产品文档。

分析洞察:https://help.aliyun.com/document_detail/325548.html

自定义服务APIhttps://help.aliyun.com/document_detail/253902.html

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
阿里通义千问大语言模型在人工智能教育领域的应用探索
阿里通义千问,阿里集团的大型预训练语言模型,应用于AI教育,实现个性化教学、自适应学习系统和智能答疑。通过AIGC,它生成个性化内容,适应不同学生需求,优化教育资源配置,推动教育创新。在教育场景中,模型提供实时反馈,定制学习路径,促进教学质量提升。随着技术进步,AI在教育领域的应用将更加深入,但也需关注伦理与安全。
3196 1
|
SQL 关系型数据库 MySQL
将MySQL 数据迁移到 PostgreSQL
将MySQL 数据迁移到 PostgreSQL 可以采用以下步骤: 安装 PostgreSQL 数据库:首先,需要安装 PostgreSQL 数据库。可以从官方网站(https://www.postgresql.org/)下载最新版本的 PostgreSQL,并根据官方指南进行安装。 创建 PostgreSQL 数据库:在 PostgreSQL 中创建与 MySQL 数据库相对应的数据库。可以使用 pgAdmin 或命令行工具(如 psql)来创建数据库。例如,如果在 MySQL 中有一个名为 "mydb" 的数据库,那么可以在 PostgreSQL 中创建一个具有相同名称的数据库。 导
4375 0
|
NoSQL 索引
MongoDB查询优化:从 10s 到 10ms
本文是我前同事付秋雷最近遇到到一个关于MongoDB执行计划选择的问题,非常有意思,在探索源码之后,他将整个问题搞明白并整理分享出来。付秋雷(他的博客)曾是Tair(阿里内部用得非常官方的KV存储系统)的核心开发,目前就职于蘑菇街。
|
11月前
|
人工智能 算法 安全
智能灾害预警系统:自然灾害的早期检测与响应
【10月更文挑战第26天】智能灾害预警系统利用大数据、物联网、云计算和人工智能等技术,实现对自然灾害的早期检测与预警。本文介绍其技术原理、应用现状及未来发展趋势,探讨如何提高预测精度、促进跨学科融合创新,推动灾害风险管理的科学化和社会化进程。
1321 2
|
存储 NoSQL 网络协议
PG内核解读-第1节PostgreSQL系统概述
本文整理自阿里云数据库开源社区Maintainer于巍(花名漠雪),在PostgreSQL数据库内核解读系列的分享。本篇内容主要分为四个部分: 1. 本系列教程介绍 2. PostgreSQL概述(历史、架构) 3. PostgreSQL安装启动 4. PostgreSQL常用命令、调试
PG内核解读-第1节PostgreSQL系统概述
|
人工智能 开发者
黑神话:悟空中的AI行为树设计
【8月更文第26天】在《黑神话:悟空》这款游戏中,NPC(非玩家角色)的智能行为对于创造一个富有沉浸感的游戏世界至关重要。为了实现复杂的敌人行为模式,游戏开发团队采用了行为树作为NPC决策的核心架构。本文将详细介绍《黑神话:悟空》中NPC AI的设计原理,特别关注行为树的设计与实现。
632 0
|
传感器 存储 运维
IoT Studio场景最佳实践
本次物联网场景最佳实践我们用六合一传感器(温度、湿度、二氧化碳、PM2.5、PM10、甲醛)实现家庭环境数据实时采集,通过家中Wi-Fi上报到阿里云IoT物联网平台,借助IoT Studio低代码工具搭建可视化大屏,实时监控家中环境指标变化。
928 0
IoT Studio场景最佳实践
|
机器学习/深度学习 传感器 算法
物联网(IoT)数据与机器学习的结合
【6月更文挑战第6天】物联网和机器学习加速融合,驱动数据收集与智能分析。通过机器学习算法处理 IoT 数据,实现智能家居、工业生产的智能化。示例代码展示如何用线性回归预测温度。结合带来的优势包括实时监测、预警、资源优化,但也面临数据质量、隐私安全、算法选择等挑战。未来需强化技术创新,应对挑战,推动社会智能化发展。
381 0
|
存储 供应链 安全
解释区块链技术的应用场景、优势及经典案例
解释区块链技术的应用场景、优势及经典案例
1342 0

热门文章

最新文章