Mysql(二)Explain详解和索引最佳实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: Mysql(二)Explain详解和索引最佳实践

Explain工具介绍

使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析你的查询语句或是结构的性能瓶颈。

在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是执行这条SQL

注意:如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中

explain中的列

  1. id列
    id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的。id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。
  2. select_type列
  1. simple:简单查询。查询不包含子查询和union
  2. primary:复杂查询中最外层的 select
  3. subquery:包含在 select 中的子查询(不在 from 子句中)
  4. derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为派生表(derived的英文含义)
  5. union:在 union 中的第二个和随后的 select
  1. table列

这一列表示 explain 的一行正在访问哪个表。

当 from 子句中有子查询时,table列是 <derivenN>格式,表示当前查询依赖 id=N 的查询,于是先执行id=N 的查询。

当有 union 时,UNION RESULT 的 table 列的值为<union1,2>,1和2表示参与 union 的 select 行id。

  1. type列
    这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。
    依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
    一般来说,得保证查询达到range级别,最好达到ref
    NULL:mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在索引列中选取最小值,可以单独查找索引来完成,不需要在执行时访问表。
    const, system:mysql能对查询的某部分进行优化并将其转化成一个常量(可以看show warnings 的结果)。用于primary key 或 unique key 的所有列与常数比较时,所以表最多有一个匹配行,读取1次,速度比较快。system是const的特例,表里只有一条元组匹配时为system
    eq_ref:primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。这可能是在const 之外最好的联接类型了,简单的 select 查询不会出现这种 type。
    ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。
    range:范围扫描通常出现在 in(), between ,> ,<, >= 等操作中。使用一个索引来检索给定范围的行。
    index:扫描全索引就能拿到结果,一般是扫描某个二级索引,这种扫描不会从索引树根节点开始快速查找,而是直接对二级索引的叶子节点遍历和扫描,速度还是比较慢的,这种查询一般为使用覆盖索引,二级索引一般比较小,所以这种通常比ALL快一些。
    ALL:即全表扫描,扫描你的聚簇索引的所有叶子节点。通常情况下这需要增加索引来进行优化了。
  2. possible_keys列

这一列显示查询可能使用哪些索引来查找。

explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提高查询性能,然后用 explain 查看效果。

  1. key列
    这一列显示mysql实际采用哪个索引来优化对该表的访问。
    如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore index。
  2. key_len列这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。key_len计算规则如下:
  • 字符串
  • char(n):n字节长度
  • varchar(n):如果是utf-8,则长度 3n + 2 字节,加的2字节用来存储字符串长度
  • 数值类型
  • tinyint:1字节
  • smallint:2字节
  • int:4字节
  • bigint:8字节
  • 时间类型
  • date:3字节
  • timestamp:4字节
  • datetime:8字节
  • 如果字段允许为 NULL,需要1字节记录是否为 NULL

索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索引。

  1. ref列
    这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),字段名(例:film.id)
  2. rows列
    这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。
  3. Extra列
    这一列展示的是额外信息。常见的重要值如下:
    1)Using index:使用覆盖索引
    覆盖索引定义:mysql执行计划explain结果里的key有使用索引,如果select后面查询的字段都可以从这个索引的树中获取,这种情况一般可以说是用到了覆盖索引,extra里一般都有using index;覆盖索引一般针对的是辅助索引,整个查询结果只通过辅助索引就能拿到结果,不需要通过辅助索引树找到主键,再通过主键去主键索引树里获取其它字段值。
    2)Using where:使用 where 语句来处理结果,并且查询的列未被索引覆盖。
    3)Using index condition:查询的列不完全被索引覆盖,where条件中是一个前导列的范围。
    4)Using temporary:mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。
    5)Using filesort:将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一般也是要考虑使用索引来优化的。
    6)Select tables optimized away:使用某些聚合函数(比如 max、min)来访问存在索引的某个字段时。

索引最佳实践

1.全值匹配

2.最左前缀法则

3.不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转向全表扫描

4.存储引擎不能使用索引中范围条件右边的列

5.尽量使用覆盖索引(只访问索引的查询(索引列包含查询列)),减少 select * 语句

6.mysql在使用不等于(!=或者<>)的时候无法使用索引会导致全表扫描

7.is null,is not null 一般情况下也无法使用索引

8.like以通配符开头('$abc...')mysql索引失效会变成全表扫描操作

9.字符串不加单引号索引失效

10.少用or或in,用它查询时,mysql不一定使用索引,mysql内部优化器会根据检索比例、表大小等多个因素整体评估是否使用索引,详见范围查询优化

11.范围查询优化

mysql内部优化器会根据检索比例、表大小等多个因素整体评估是否使用索引。有时候由于单次数据量查询过大导致优化器最终选择不走索引。

优化方法:可以将大的范围拆分成多个小范围

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
3月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
3月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
102 4
|
5月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
3月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
4月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
125 9
|
5月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
113 12
|
6月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
139 3
|
1月前
|
安全 关系型数据库 MySQL
MySQL安全最佳实践:保护你的数据库
本文深入探讨了MySQL数据库的安全防护体系,涵盖认证安全、访问控制、网络安全、数据加密、审计监控、备份恢复、操作系统安全、应急响应等多个方面。通过具体配置示例,为企业提供了一套全面的安全实践方案,帮助强化数据库安全,防止数据泄露和未授权访问,保障企业数据资产安全。
|
16天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
54 3
|
22天前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。

热门文章

最新文章

推荐镜像

更多