JVM(七)JVM调优实战

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: JVM(七)JVM调优实战

使用 Alibaba Arthas(阿尔萨斯)

官方文档

GC 日志详解

对于java应用我们可以通过一些配置把程序运行过程中的gc日志全部打印出来,然后分析gc日志得到关键性指标,分析GC原因,调优JVM参数。

打印GC日志方法,在JVM参数里增加参数,%t 代表时间

-Xloggc:./gc-%t.log -XX:+PrintGCDetails -XX:+PrintGCDateStamps  -XX:+PrintGCTimeStamps -XX:+PrintGCCause -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=100M

Tomcat则直接加在JAVA_OPTS变量里。

如何分析GC日志

运行程序加上对应gc日志

java -jar -Xloggc:./gc-%t.log -Xms512m -Xmx512m -XX:+PrintGCDetails -XX:+PrintGCDateStamps  -XX:+PrintGCTimeStamps -XX:+PrintGCCause -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=100M -XX:+UseParallelGC -XX:+UseParallelOldGC microservice-eureka-server.jar

以下是部分日志

gclog.png


我们可以看到图中第一个红框,是项目的配置参数。这里不仅配置了打印GC日志,还有相关的VM内存参数。

第二个红框中的是在这个GC时间点发生GC之后相关GC情况。

对于3.084: 这是从jvm启动开始计算到这次GC经过的时间,前面还有具体的发生时间日期。

2、Full GC(Metadata GC Threshold)指这是一次full gc,括号里是gc的原因, PSYoungGen是年轻代的GC,ParOldGen是老年代的GC,Metaspace是元空间的GC

3、 1175K->0K(84992K),这三个数字分别对应GC之前占用年轻代的大小,GC之后年轻代占用,以及整个年轻代的大小。

4、6503K->6536K(14080K),这三个数字分别对应GC之前占用老年代的大小,GC之后老年代占用,以及整个老年代的大小。

5、7678K->6536K(99072K),这三个数字分别对应GC之前占用堆内存的大小,GC之后堆内存占用,以及整个堆内存的大小。

6、12200K->12200K(12672K),这三个数字分别对应GC之前占用元空间内存的大小,GC之后元空间内存占用,以及整个元空间内存的大小。

7、0.0483377是该时间点GC总耗费时间。

从日志可以发现几次fullgc都是由于元空间不够导致的,所以我们可以将元空间调大点

java -jar -Xloggc:./gc-%t.log -Xms512m -Xmx512m -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:+PrintGCDetails -XX:+PrintGCDateStamps  -XX:+PrintGCTimeStamps -XX:+PrintGCCause -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=100M -XX:+UseParallelGC -XX:+UseParallelOldGC microservice-eureka-server.jar

调整完我们再看下gc日志发现已经没有因为元空间不够导致的fullgc了

CMS

-Xloggc:d:/gc-cms-%t.log -Xms50M -Xmx50M -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:+PrintGCDetails -XX:+PrintGCDateStamps  
 -XX:+PrintGCTimeStamps -XX:+PrintGCCause  -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=100M 
 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC  

G1

-Xloggc:d:/gc-g1-%t.log -Xms50M -Xmx50M -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:+PrintGCDetails -XX:+PrintGCDateStamps  
 -XX:+PrintGCTimeStamps -XX:+PrintGCCause  -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=100M -XX:+UseG1GC 

上面的这些参数,能够帮我们查看分析GC的垃圾收集情况。但是如果GC日志很多很多,成千上万行。难以分析。所以我们可以借助一些功能来帮助我们分析,这里推荐一个分析gc网站gceasy,可以上传gc文件,然后它会利用可视化的界面来展现GC情况。

JVM参数汇总查看命令

java -XX:+PrintFlagsInitial 表示打印出所有参数选项的默认值

java -XX:+PrintFlagsFinal 表示打印出所有参数选项在运行程序时生效的值

Class常量池与运行时常量池

Class常量池可以理解为是Class文件中的资源仓库。 Class文件中除了包含类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池(constant pool table),用于存放编译期生成的各种字面量(Literal)和符号引用(Symbolic References)

字面量

字面量就是指由字母、数字等构成的字符串或者数值常量

字面量只可以右值出现,所谓右值是指等号右边的值,如:int a=1 这里的a为左值,1为右值。在这个例子中1就是字面量。

int a = 1;
int b = 2;
int c = "abcdefg";
int d = "abcdefg";

符号引用

符号引用是编译原理中的概念,是相对于直接引用来说的。主要包括了以下三类常量:

  • 类和接口的全限定名
  • 字段的名称和描述符
  • 方法的名称和描述符

上面的a,b就是字段名称,就是一种符号引用,还有Math类常量池里的 Ljava/lang/Math 是类的全限定名,add和divide是方法名称,()是一种UTF8格式的描述符,这些都是符号引用。

这些常量池现在是静态信息,只有到运行时被加载到内存后,这些符号才有对应的内存地址信息,这些常量池一旦被装入内存就变成运行时常量池,对应的符号引用在程序加载或运行时会被转变为被加载到内存区域的代码的直接引用,也就是我们说的动态链接了。例如,compute()这个符号引用在运行时就会被转变为compute()方法具体代码在内存中的地址,主要通过对象头里的类型指针去转换直接引用。


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
13天前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
44 10
|
6月前
|
监控 Java 调度
探秘Java虚拟机(JVM)性能调优:技术要点与实战策略
【6月更文挑战第30天】**探索JVM性能调优:**关注堆内存配置(Xms, Xmx, XX:NewRatio, XX:SurvivorRatio),选择适合的垃圾收集器(如Parallel, CMS, G1),利用jstat, jmap等工具诊断,解决Full GC问题,实战中结合MAT分析内存泄露。调优是平衡内存占用、延迟和吞吐量的艺术,借助VisualVM等工具提升系统在高负载下的稳定性与效率。
108 1
|
29天前
|
存储 IDE Java
实战优化公司线上系统JVM:从基础到高级
【11月更文挑战第28天】Java虚拟机(JVM)是Java语言的核心组件,它使得Java程序能够实现“一次编写,到处运行”的跨平台特性。在现代应用程序中,JVM的性能和稳定性直接影响到系统的整体表现。本文将深入探讨JVM的基础知识、基本特点、定义、发展历史、主要概念、调试工具、内存管理、垃圾回收、性能调优等方面,并提供一个实际的问题demo,使用IntelliJ IDEA工具进行调试演示。
34 0
|
2月前
|
Arthas 监控 数据可视化
JVM进阶调优系列(7)JVM调优监控必备命令、工具集合|实用干货
本文介绍了JVM调优监控命令及其应用,包括JDK自带工具如jps、jinfo、jstat、jstack、jmap、jhat等,以及第三方工具如Arthas、GCeasy、MAT、GCViewer等。通过这些工具,可以有效监控和优化JVM性能,解决内存泄漏、线程死锁等问题,提高系统稳定性。文章还提供了详细的命令示例和应用场景,帮助读者更好地理解和使用这些工具。
|
2月前
|
监控 架构师 Java
JVM进阶调优系列(6)一文详解JVM参数与大厂实战调优模板推荐
本文详述了JVM参数的分类及使用方法,包括标准参数、非标准参数和不稳定参数的定义及其应用场景。特别介绍了JVM调优中的关键参数,如堆内存、垃圾回收器和GC日志等配置,并提供了大厂生产环境中常用的调优模板,帮助开发者优化Java应用程序的性能。
|
3月前
|
存储 缓存 监控
【JVM调优】如何进行JVM调优?一篇文章就够了!
深入解读JVM性能的监控、定位和调优方案,阐述jps/stat/jstack、MAT等常用性能分析工具的使用,提出JVM参数、内存溢出、内存泄漏、CPU飙升、GC频繁等实际场景下JVM调优的方案。
369 15
|
2月前
|
存储 监控 算法
JVM调优深度剖析:内存模型、垃圾收集、工具与实战
【10月更文挑战第9天】在Java开发领域,Java虚拟机(JVM)的性能调优是构建高性能、高并发系统不可或缺的一部分。作为一名资深架构师,深入理解JVM的内存模型、垃圾收集机制、调优工具及其实现原理,对于提升系统的整体性能和稳定性至关重要。本文将深入探讨这些内容,并提供针对单机几十万并发系统的JVM调优策略和Java代码示例。
63 2
|
4月前
|
C# 开发者 Windows
震撼发布:全面解析WPF中的打印功能——从基础设置到高级定制,带你一步步实现直接打印文档的完整流程,让你的WPF应用程序瞬间升级,掌握这一技能,轻松应对各种打印需求,彻底告别打印难题!
【8月更文挑战第31天】打印功能在许多WPF应用中不可或缺,尤其在需要生成纸质文档时。WPF提供了强大的打印支持,通过`PrintDialog`等类简化了打印集成。本文将详细介绍如何在WPF应用中实现直接打印文档的功能,并通过具体示例代码展示其实现过程。
414 0
|
5月前
|
运维 监控 Java
(十)JVM成神路之线上故障排查、性能监控工具分析及各线上问题排错实战
经过前述九章的JVM知识学习后,咱们对于JVM的整体知识体系已经有了全面的认知。但前面的章节中,更多的是停留在理论上进行阐述,而本章节中则更多的会分析JVM的实战操作。
133 1
|
4月前
|
运维 监控 Java
【JVM 调优秘籍】实战指南:JVM 调优参数全解析,让 Java 应用程序性能飙升!
【8月更文挑战第24天】本文通过一个大型在线零售平台的例子,深入探讨了Java虚拟机(JVM)性能调优的关键技术。面对应用响应延迟的问题,文章详细介绍了几种常用的JVM参数调整策略,包括堆内存大小、年轻代配置、垃圾回收器的选择及日志记录等。通过具体实践(如设置`-Xms`, `-Xmx`, `-XX:NewRatio`, `-XX:+UseParallelGC`等),成功降低了高峰期的响应时间,提高了系统的整体性能与稳定性。案例展示了合理配置JVM参数的重要性及其对解决实际问题的有效性。
127 0