uboot和linux内核移植流程简述

简介: uboot和linux内核移植流程简述

一、移植uboot流程

1、从半导体芯片厂下载对应的demo,然后编译测试demo版的uboot

开发板基本都是参考半导体厂商的 dmeo 板,而半导体厂商会在他们自己的开发板上移植好 uboot、linux kernel 和 rootfs 等,最终制作好 BSP包提供给用户。我们可以在官方提供的 BSP 包的基础上添加我们的板子,也就是俗称的移植。


一般 uboot 中需要解决串口、NAND、EMMC 或 SD 卡、网络和 LCD 驱动,因为 uboot

的主要目的就是启动 Linux 内核,所以不需要考虑太多的外设驱动。


2、在uboot中添加自己的硬件

(1)添加默认配置文件

  • 在include/configs/ 目录下创建配置文件 (复制mx6ull_14x14_evk_emmc_defconfig,然后重命名) 。

(2)添加开发板对应的头文件

  • 目 录 include/configs 下 添 加开发板对应的头文件( 复 制include/configs/mx6ullevk.h,并重命名)
  • mx6ull_alientek_emmc.h 文件中基本都是“CONFIG_”开头的宏定义,这也说明 mx6ull_alientek_emmc.h 文件的主要功能就是配置或者裁剪 uboot。如果需要某个功能的话就在里面添加这个功能对应的 CONFIG_XXX 宏即可,如果不需要某个功能的话就删除掉对应的宏即可


(3)添加开发板对应的板级文件夹

  • 复制 board/freescale / mx6ullevk,将其重命名 mx6ull_alientek_emmc,
  • 将 其 中 的 mx6ullevk.c 文 件 重 命 名 为mx6ull_alientek_emmc.c
  • uboot 中每个板子都有一个对应的文件夹来存放板级文件,比如开发板上外设驱动文件等

(4)修改开发板对应的板级文件夹内容

  • 修改 mx6ull_alientek_emmc 目录下的 Makefile
  • 修改 镜像配置文件 mx6ull_alientek_emmc 目录下的 imximage.cfg
  • 修改 mx6ull_alientek_emmc 目录下的 Kconfig

(5)修改U-Boot 图形配置文件

(6)修改相关驱动(LCD 网口)

(7)编译验证

(8)设置bootcmd 和 和 bootargs 环境变量

二、linux内核kernel移植流程

1. 在 Linux 内核中查找可以参考的板子,编译出参考板子对应的 zImage 和.dtb 文件

2. 使用参考板子的 zImage 文件和.dtb 文件在我们所使用的板子上启动 Linux 内核

  • 能启动的话就万事大吉
  • 不能启动需要调试 Linux 内核,Linux 内核启动用到的外设为,DRAM(Uboot 都初始化好的)和串口

3.添加开发板信息

(1)添加开发板默认配置文件

  • arch/arm/configs 目录下的 imx_v7_mfg_defconfig重新复制一份 ,命名为 imx_alientek_emmc_defconfig

(2)添加开发板对应的设备树文件

  • 入目录 arch/arm/boot/dts 中,复制一份 imx6ull-14x14-evk.dts,然后将其重命名为 imx6ull-alientek-emmc.dts

(3)修改相应的驱动

  • NAND Flash、EMMC、SD 卡等驱动官方的 Linux 内核都是已经提供好了,基本不会出问题。重点是网络驱动

(4)内核启动后构建根文件系统

相关文章
|
3天前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
1天前
|
缓存 网络协议 Linux
Linux操作系统内核
Linux操作系统内核 1、进程管理: 进程调度 进程创建与销毁 进程间通信 2、内存管理: 内存分配与回收 虚拟内存管理 缓存管理 3、驱动管理: 设备驱动程序接口 硬件抽象层 中断处理 4、文件和网络管理: 文件系统管理 网络协议栈 网络安全及防火墙管理
18 4
|
3天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
5天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
28 4
|
6天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
8天前
|
缓存 Linux
揭秘Linux内核:探索CPU拓扑结构
【10月更文挑战第26天】
25 1
|
8天前
|
缓存 运维 Linux
深入探索Linux内核:CPU拓扑结构探测
【10月更文挑战第18天】在现代计算机系统中,CPU的拓扑结构对性能优化和资源管理至关重要。了解CPU的核心、线程、NUMA节点等信息,可以帮助开发者和系统管理员更好地调优应用程序和系统配置。本文将深入探讨如何在Linux内核中探测CPU拓扑结构,介绍相关工具和方法。
10 0
|
14天前
|
缓存 算法 安全
深入理解Linux操作系统的心脏:内核与系统调用####
【10月更文挑战第20天】 本文将带你探索Linux操作系统的核心——其强大的内核和高效的系统调用机制。通过深入浅出的解释,我们将揭示这些技术是如何协同工作以支撑起整个系统的运行,同时也会触及一些常见的误解和背后的哲学思想。无论你是开发者、系统管理员还是普通用户,了解这些基础知识都将有助于你更好地利用Linux的强大功能。 ####
25 1
|
15天前
|
缓存 编解码 监控
深入探索Linux内核调度机制的奥秘###
【10月更文挑战第19天】 本文旨在以通俗易懂的语言,深入浅出地剖析Linux操作系统内核中的进程调度机制,揭示其背后的设计哲学与实现策略。我们将从基础概念入手,逐步揭开Linux调度策略的神秘面纱,探讨其如何高效、公平地管理系统资源,以及这些机制对系统性能和用户体验的影响。通过本文,您将获得关于Linux调度机制的全新视角,理解其在日常计算中扮演的关键角色。 ###
42 1
|
6天前
|
缓存 算法 Linux
Linux内核中的内存管理机制深度剖析####
【10月更文挑战第28天】 本文深入探讨了Linux操作系统的心脏——内核,聚焦其内存管理机制的奥秘。不同于传统摘要的概述方式,本文将以一次虚拟的内存分配请求为引子,逐步揭开Linux如何高效、安全地管理着从微小嵌入式设备到庞大数据中心数以千计程序的内存需求。通过这段旅程,读者将直观感受到Linux内存管理的精妙设计与强大能力,以及它是如何在复杂多变的环境中保持系统稳定与性能优化的。 ####
13 0