机器(深度)学习中的 Dropout

简介: 机器(深度)学习中的 Dropout

这篇文章中,我将主要讨论神经网络中 dropout 的概念,特别是深度网络,然后进行实验,通过在标准数据集上实施深度网络并查看 dropout 的影响,看看它在实践中实际影响如何。

1. Dropout是什么?

术语“dropout”是指在神经网络中丢弃单元(包括隐藏的和可见的)。

简单来说,dropout 是指随机选择的某组神经元在训练阶段忽略单元(即神经元)。 “忽略”是指在特定的前向或后向传递过程中不考虑这些单元。

详细的就是,在每个训练阶段,单个节点要么以 1-p 的概率退出网络,要么以 p 的概率保留,这样就剩下一个缩小的网络;也删除了到丢弃节点的传入和传出边。

2. 为什么需要Dropout?

鉴于我们对 dropout 有所了解,一个问题出现了——为什么我们需要 dropout?为什么我们需要关闭神经网络的某些部分?

这些问题的答案是“防止过拟合”。

全连接层占据了大部分参数,因此,神经元在训练过程中相互依赖,这抑制了每个神经元的个体能力,导致训练数据过拟合。

3. 重新审视 Dropout

现在我们对 dropout 和动机有了一些了解,让我们来详细了解一下。如果你只是想了解神经网络中的 dropout,那么以上两节就足够了。在本节中,我将涉及更多技术细节。

在机器学习中,正则化是防止过度拟合的方法。正则化通过向损失函数添加惩罚来减少过度拟合。通过添加这个惩罚,模型被训练成不学习相互依赖的特征权重集。了解逻辑回归的人可能熟悉 L1(拉普拉斯)和 L2(高斯)惩罚。

Dropout 是一种神经网络正则化方法,有助于减少神经元之间的相互依赖学习。

4. 训练阶段

训练阶段:对于每个隐藏层,对于每个训练样本,对于每次迭代,忽略(清零)节点(和相应的激活)的随机分数 p。

5. 测试阶段

使用所有激活,但将它们减少一个因子 p(以解决训练期间丢失的激活)。

Srivastava, Nitish, et al.

6. 作用

  1. Dropout 迫使神经网络学习更强大的特征,这些特征与其他神经元的许多不同随机子集结合使用时很有用。
  2. Dropout 使收敛所需的迭代次数加倍。然而,每个时期的训练时间较少。
  3. 有 H 个隐藏单元,每个隐藏单元都可以被丢弃,我们有2^H 个可能的模型。在测试阶段,考虑整个网络,每次激活都减少一个因子 p。

7. 实际效果

让我们在实践中试试这个理论。为了了解 dropout 的工作原理,我在 Keras 中构建了一个深层网络,并尝试在 CIFAR-10 数据集上对其进行验证。构建的深度网络具有三个大小为 64、128 和 256 的卷积层,然后是两个大小为 512 的密集连接层和一个大小为 10 的输出层密集层(CIFAR-10 数据集中的类数)。

我将 ReLU 作为隐藏层的激活函数,将 sigmoid 作为输出层的激活函数(这些是标准,并没有在改变这些方面做太多实验)。另外,我使用了标准的分类交叉熵损失。

最后,我在所有层中使用了 dropout,并将 dropout 的比例从 0.0(根本没有 dropout)增加到 0.9,步长为 0.1,并将每个层运行到 20 个 epoch。结果如下所示:

从上图中我们可以得出结论,随着 dropout 的增加,在趋势开始下降之前,验证准确率有所提高,损失最初有所下降。

如果 dropout fraction 为 0.2,趋势下降可能有两个原因:

  1. 0.2 是此数据集、网络和使用的设置参数的实际最小值
  2. 需要更多的时期来训练网络。
相关文章
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLOv8专栏探讨了针对目标检测的ConvNet创新,提出ConvNeXt模型,它挑战Transformer在视觉任务中的主导地位。ConvNeXt通过增大卷积核、使用GeLU激活、切换到LayerNorm和改进下采样层,提升了纯ConvNet性能,达到与Transformer相当的准确率和效率。论文和代码已公开。
|
7月前
|
机器学习/深度学习 监控 Python
【顶刊2023】重新审视Dropout层的作用,不止可有效防止过拟合!来源:《Dropout Reduces Underfitting》
【顶刊2023】重新审视Dropout层的作用,不止可有效防止过拟合!来源:《Dropout Reduces Underfitting》
92 1
【顶刊2023】重新审视Dropout层的作用,不止可有效防止过拟合!来源:《Dropout Reduces Underfitting》
|
7月前
|
机器学习/深度学习 Go Python
【轻量化网络】实战:更改SqueezeNet网络&MobileNet网络& ShuffleNet网络输出替换yolo的backbone部分
【轻量化网络】实战:更改SqueezeNet网络&MobileNet网络& ShuffleNet网络输出替换yolo的backbone部分
161 0
|
7月前
|
机器学习/深度学习 算法 PyTorch
手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练
我这几天遇到一个不错的范例,将的是一层一层教我们搭建一个神经网络,其实很多我接触过的伙伴对修改模型架构这块还是头疼。其实我么可以从简单的神经网络层开始,自己DIY每一层,对上手修改架构有帮助。这里用的是paddle框架,当然玩pytorch的朋友也别急着关掉,因为我这几天刷到的pytorch感觉和飞桨的这块几乎是非常相似。只是有点点表达不一样,其他都完全一样。甚至连编程习惯都非常一样。下面是来自PaddlePaddle FLuid深度学习入门与实战一书的案例。
181 0
|
机器学习/深度学习 Web App开发 人工智能
ConvNeXt网络介绍,搭建以及训练
ConvNeXt网络介绍,搭建以及训练
|
机器学习/深度学习
LeNet讲解以及搭建训练过程
LeNet讲解以及搭建训练过程
|
数据可视化
探索VGG网络与LeNet网络对精度的影响
探索VGG网络与LeNet网络对精度的影响
80 0
|
机器学习/深度学习 并行计算 PyTorch
训练速度最高100倍提升!基于PyTorch实现的可微逻辑门网络开源
训练速度最高100倍提升!基于PyTorch实现的可微逻辑门网络开源
107 0
|
机器学习/深度学习 算法 搜索推荐
零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究
零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究
242 0
|
机器学习/深度学习 移动开发 Serverless
聊一聊深度学习--包括计算前馈网络的反向传播和卷积的反向传播(二)
聊一聊深度学习--包括计算前馈网络的反向传播和卷积的反向传播
118 0