基于Django 框架搭建算法学习系统,包含KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络 毕业设计附完整代码

简介: 基于Django 框架搭建算法学习系统,包含KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络 毕业设计附完整代码

52863fce4c6dac519c9cf4205f172eb7.pngdb5d12dc79ee1e86b2f4f2ddeaea13e1.png


完整代码:https://download.csdn.net/download/qq_38735017/87425744

kNN 简介


kNN 原理 :存在一个样本数据集合,也称作训练集或者样本集,并且样本集中每个数据都存在标签,即样本集实际上是 每条数据 与 所属分类 的 对应关系。 核心思想 :若输入的数据没有标签,则新数据的每个特征与样本集中数据对应的特征进行比较,该算法提取样本集中特征最相似数据(最近邻)的分类标签。 k :选自最相似的 k 个数据,通常是不大于 20 的整数,最后选择这 k 个数据中出现次数最多的分类,作为新数据的分类。


k-近邻算法的一般流程


1.收集数据:可以使用任何方法,
2.准备数据:距离计算所需的数值,最好是结构化的数据格式。
3.分析数据:可以使用任何方法。
4.训练算法:此不走不适用于k-近邻算法。
5.测试算法:计算错误率。
6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类之行后续的处理。

example1

python 导入数据

from numpy import *
import operator
def    createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

python 处理数据

# 计算已知类别数据集中的点与当前点之间的距离(欧式距离)
# 按照距离递增次序排序
# 选取与当前点距离最小的K个点
# 确定前K个点所在类别的出现频率
# 返回前k个点出现频率最高的类别最为当前点的预测分类
# inX输入向量,训练集dataSet,标签向量labels,k表示用于选择最近邻的数目
def    clissfy0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX,(dataSetSize,1)) - dataSet
    sqDiffMat = diffMat ** 0.5
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteLabel = labels[sortedDistIndicies[i]]
        classCount[voteLabel] = classCount.get(voteLabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(),
        key = operator.itemgetter(1),reverse = True)
    return sortedClassCount[0][0]

python 数据测试

import kNN
from numpy import *
dataSet,labels = createDataSet()
testX = array([1.2,1.1])
k = 3
outputLabelX = classify0(testX,dataSet,labels,k)
testY = array([0.1,0.3])
outputLabelY = classify0(testY,dataSet,labels,k)
print('input is :',testX,'output class is :',outputLabelX)
print('input is :',testY,'output class is :',outputLabelY)


python 结果输出

1. ('input is :', array([ 1.2,  1.1]), 'output class is :', 'A')
2. ('input is :', array([ 0.1,  0.3]), 'output class is :', 'B')


example2

使用 k-近邻算法改进约会网站的配对效果

处理步骤

1.收集数据:提供文本文件
2.准备数据:使用python解析文本文件
3.分析数据:使用matplotlib画二维扩散图
4.训练算法:此步骤不适用与k-近邻算法
5.测试算法:使用提供的部份数据作为测试样本
6:使用算法:输入一些特征数据以判断对方是否为自己喜欢的类型

python 整体实现

# coding:utf-8fromnumpyimport*importoperatorfromkNNimportclassify0importmatplotlib.pyplotaspltdeffile2matrmix(filename):fr=open(filename)arrayLines=fr.readlines()numberOfLines=len(arrayLines)returnMat=zeros((numberOfLines,3))classLabelVector=[]index=0forlineinarrayLines:line=line.strip()listFromLine=line.split('\t')returnMat[index,:]=listFromLine[0:3]classLabelVector.append(int(listFromLine[-1]))index+=1returnreturnMat,classLabelVectordefautoNorm(dataSet):minVals=dataSet.min(0)maxVals=dataSet.max(0)ranges=maxVals-minValsnormDataSet=zeros(shape(dataSet))m=dataSet.shape[0]normDataSet=dataSet-tile(minVals,(m,1))normDataSet=normDataSet/tile(ranges,(m,1))returnnormDataSet,ranges,minValsdefdatingClassTest():hoRatio=0.10datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')normMat,ranges,minVals=autoNorm(datingDataMat)m=normMat.shape[0]numTestVecs=int(m*hoRatio)errorCount=0.0foriinrange(numTestVecs):classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)print('the classifier came back with: %d, the real answer is: %d'%(classifierResult,datingLabels[i]))if(classifierResult!=datingLabels[i]):errorCount+=1.0print('the total error rate is: %f'%(errorCount/float(numTestVecs)))defclassifyPerson():resultList=['not at all','in small doses','in large doses']percentTats=float(raw_input('percentage of time spent playing video games?'))ffMiles=float(raw_input('frequent flier miles earned per year?'))iceCream=float(raw_input('liters of ice cream consumed per year?'))datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')normMat,ranges,minVals=autoNorm(datingDataMat)inArr=array([ffMiles,percentTats,iceCream])classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)print('you will probably like this person:',resultList[classifierResult-1])datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')classifyPerson()fig=plt.figure()ax=fig.add_subplot(111)ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))plt.show()


K-最近邻算法总结


k 近邻算法是最简单有效的分类算法,必须全部保存全部数据集,如果训练数据集很大,必须使用大量的存储空间,同时由于必须对数据集中的每个数据计算距离值,实际使用可能非常耗时。 k 近邻算法无法给出任何数据的基础结构信息,我们无法知晓平均实例样本和典型实例样本具有神秘特征。


决策树


决策树 流程图正方形代表判断模块,椭圆形代表终止模块,从判断模块引出的左右箭头称作分支,它可以到达另一个判断模块活着终止模块。 决策树 [优点]:计算复杂度不高,输出结果易于理解,对于中间值的缺失不敏感,可以处理不相关特征数据。 决策树[缺点]:可能会产生过度匹配的问题。 决策树[适用数据类型]:数值型和标称型。


决策树的一般流程


(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们需要检验图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:使用于任何监督学习算法。

信息增益


划分数据集的最大原则:将无序的数据集变的有序。 判断数据集的有序程度:信息增益(熵),计算每个特征值划分数据集后获得的信息增益,获得信息增益最高的特征就是最好的选择。 信息增益[公式]:


image.png


其中 n 是分类的数目。

python 决策树

计算给定数据集的信息熵

frommathimportlogdefcalcShannonEnt(dataSet):numEntries=len(dataSet)labelCounts={}forfeatVecindataSet:currentLabel=featVec[-1]ifcurrentLabelnotinlabelCounts.keys():labelCounts[currentLabel]=0labelCounts[currentLabel]+=1shannonEnt=0.0forkeyinlabelCounts:prob=float(labelCounts[key])/numEntriesshannonEnt-=prob*log(prob,2)returnshannonEntdefcreateDataSet():dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no'],]labels=['no surfacing','flippers']returndataSet,labelsmyDat,labels=createDataSet()print(myDat)print(labels)shannonEnt=calcShannonEnt(myDat)print(shannonEnt)

划分数据集


importdtreedefsplitDataset(dataSet,axis,value):retDataSet=[]forfeatVecindataSet:iffeatVec[axis]==value:reducedFeatVec=featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])retDataSet.append(reducedFeatVec)returnretDataSetmyData,labels=dtree.createDataSet()print(myData)retDataSet=splitDataset(myData,0,1)print(retDataSet)retDataSet=splitDataset(myData,0,0)print(retDataSet)

选择最好的数据划分方式

defchooseBestFeatureToSplit(dataSet):numFeatures=len(dataSet[0])-1baseEntropy=dtree.calcShannonEnt(dataSet)bestInfoGain=0.0bestFeature=-1foriinrange(numFeatures):featList=[example[i]forexampleindataSet]uniqueVals=set(featList)newEntropy=0.0forvalueinuniqueVals:subDataSet=splitDataset(dataSet,i,value)prob=len(subDataSet)/float(len(dataSet))newEntropy+=prob*dtree.calcShannonEnt(subDataSet)infoGain=baseEntropy-newEntropyif(infoGain>bestInfoGain):bestInfoGain=infoGainbestFeature=ireturnbestFeaturemyData,labels=dtree.createDataSet()print('myData:',myData)bestFeature=chooseBestFeatureToSplit(myData)print('bestFeature:',bestFeature)
结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('bestFeature:', 0)
结果分析
运行结果表明第0个特征是最好用于划分数据集的特征,即数据集的的第一个参数,比如在该数据集中以第一个参数特征划分数据时,第一个分组中有3个,其中有一个被划分为no,第二个分组中全部属于no;当以第二个参数分组时,第一个分组中2个为yes,2个为no,第二个分类中只有一个no类。

递归构建决策树


工作原理:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于 2 个,因此可能存在大于 2 个分支的数据集划分,在第一次划分后,数据将被传向树分支的下一个节点,在这个节点上我们可以再次划分数据。 递归条件:程序遍历完所有划分数据集的属性,或者没个分支下的所有实例都具有相同的分类。


构建递归决策树

importdtreeimportoperatordefmajorityCnt(classList):classCount={}forvoteinclassList:ifvotenotinclassCount.keys():classCount[vote]=0classCount[vote]+=1sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)returnsortedClassCount[0][0]defcreateTree(dataSet,labels):classList=[example[-1]forexampleindataSet]ifclassList.count(classList[0])==len(classList):returnclassList[0]iflen(dataSet[0])==1:returnmajorityCnt(classlist)bestFeat=chooseBestFeatureToSplit(dataSet)bestFeatLabel=labels[bestFeat]myTree={bestFeatLabel:{}}del(labels[bestFeat])featValues=[example[bestFeat]forexampleindataSet]uniqueVals=set(featValues)forvalueinuniqueVals:subLabels=labels[:]myTree[bestFeatLabel][value]=createTree(splitDataset(dataSet,bestFeat,value),subLabels)returnmyTreemyData,labels=dtree.createDataSet()print('myData:',myData)myTree=createTree(myData,labels)print('myTree:',myTree)
结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('myTree:', {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}})


结果分析
myTree 包含了树结构信息的前套字典,第一个关键字no surfacing是第一个划分数据集的特征名称,值为另一个数据字典,第二个关键字是no surfacing特征划分的数据集,是no surfacing的字节点,如果值是类标签,那么该节点为叶子节点,如果值是另一个数据字典,那么该节点是个判断节点,如此递归。

测试算法:使用决策树执行分类

使用决策树的分类函数

importtreeplotterimportdtreedefclassify(inputTree,featLabels,testVec):firstStr=inputTree.keys()[0]secondDict=inputTree[firstStr]featIndex=featLabels.index(firstStr)forkeyinsecondDict.keys():iftestVec[featIndex]==key:iftype(secondDict[key]).__name__=='dict':classLabel=classify(secondDict[key],featLabels,testVec)else:classLabel=secondDict[key]returnclassLabelmyDat,labels=dtree.createDataSet()print(labels)myTree=myTree=treeplotter.retrieveTree(0)print(myTree)print('classify(myTree,labels,[1,0]):',classify(myTree,labels,[1,0]))print('classify(myTree,labels,[1,1]):',classify(myTree,labels,[1,1]))
结果输出
['no surfacing', 'flippers']
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 'maybe'}}
('classify(myTree,labels,[1,0]):', 'no')
('classify(myTree,labels,[1,1]):', 'yes')

存储决策树


由于决策树的构造十分耗时,所以用创建好的决策树解决分类问题可以极大的提高效率。因此需要使用 python 模块 pickle 序列化对象,序列化对象可以在磁盘上保存对象,并在需要的地方读取出来,任何对象都可以执行序列化操作。

# 使用pickle模块存储决策树importpickledefstoreTree(inputTree,filename):fw=open(filename,'w')pickle.dump(inputTree,fw)fw.close()defgrabTree(filename):fr=open(filename)returnpickle.load(fr)


结果展示(Kmeans):


3803651c1798f7347261356b451463e3.png

6ccb6c082e6b39ffbb16092ef6de0d51.png




相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
217 55
|
8天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
102 66
|
2天前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
4天前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
18 7
|
10天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
41 5
|
8天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
17天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
53 3
|
11天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
4天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章