基于Django 框架搭建算法学习系统,包含KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络 毕业设计附完整代码

简介: 基于Django 框架搭建算法学习系统,包含KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络 毕业设计附完整代码

52863fce4c6dac519c9cf4205f172eb7.pngdb5d12dc79ee1e86b2f4f2ddeaea13e1.png


完整代码:https://download.csdn.net/download/qq_38735017/87425744

kNN 简介


kNN 原理 :存在一个样本数据集合,也称作训练集或者样本集,并且样本集中每个数据都存在标签,即样本集实际上是 每条数据 与 所属分类 的 对应关系。 核心思想 :若输入的数据没有标签,则新数据的每个特征与样本集中数据对应的特征进行比较,该算法提取样本集中特征最相似数据(最近邻)的分类标签。 k :选自最相似的 k 个数据,通常是不大于 20 的整数,最后选择这 k 个数据中出现次数最多的分类,作为新数据的分类。


k-近邻算法的一般流程


1.收集数据:可以使用任何方法,
2.准备数据:距离计算所需的数值,最好是结构化的数据格式。
3.分析数据:可以使用任何方法。
4.训练算法:此不走不适用于k-近邻算法。
5.测试算法:计算错误率。
6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类之行后续的处理。

example1

python 导入数据

from numpy import *
import operator
def    createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

python 处理数据

# 计算已知类别数据集中的点与当前点之间的距离(欧式距离)
# 按照距离递增次序排序
# 选取与当前点距离最小的K个点
# 确定前K个点所在类别的出现频率
# 返回前k个点出现频率最高的类别最为当前点的预测分类
# inX输入向量,训练集dataSet,标签向量labels,k表示用于选择最近邻的数目
def    clissfy0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX,(dataSetSize,1)) - dataSet
    sqDiffMat = diffMat ** 0.5
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteLabel = labels[sortedDistIndicies[i]]
        classCount[voteLabel] = classCount.get(voteLabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(),
        key = operator.itemgetter(1),reverse = True)
    return sortedClassCount[0][0]

python 数据测试

import kNN
from numpy import *
dataSet,labels = createDataSet()
testX = array([1.2,1.1])
k = 3
outputLabelX = classify0(testX,dataSet,labels,k)
testY = array([0.1,0.3])
outputLabelY = classify0(testY,dataSet,labels,k)
print('input is :',testX,'output class is :',outputLabelX)
print('input is :',testY,'output class is :',outputLabelY)


python 结果输出

1. ('input is :', array([ 1.2,  1.1]), 'output class is :', 'A')
2. ('input is :', array([ 0.1,  0.3]), 'output class is :', 'B')


example2

使用 k-近邻算法改进约会网站的配对效果

处理步骤

1.收集数据:提供文本文件
2.准备数据:使用python解析文本文件
3.分析数据:使用matplotlib画二维扩散图
4.训练算法:此步骤不适用与k-近邻算法
5.测试算法:使用提供的部份数据作为测试样本
6:使用算法:输入一些特征数据以判断对方是否为自己喜欢的类型

python 整体实现

# coding:utf-8fromnumpyimport*importoperatorfromkNNimportclassify0importmatplotlib.pyplotaspltdeffile2matrmix(filename):fr=open(filename)arrayLines=fr.readlines()numberOfLines=len(arrayLines)returnMat=zeros((numberOfLines,3))classLabelVector=[]index=0forlineinarrayLines:line=line.strip()listFromLine=line.split('\t')returnMat[index,:]=listFromLine[0:3]classLabelVector.append(int(listFromLine[-1]))index+=1returnreturnMat,classLabelVectordefautoNorm(dataSet):minVals=dataSet.min(0)maxVals=dataSet.max(0)ranges=maxVals-minValsnormDataSet=zeros(shape(dataSet))m=dataSet.shape[0]normDataSet=dataSet-tile(minVals,(m,1))normDataSet=normDataSet/tile(ranges,(m,1))returnnormDataSet,ranges,minValsdefdatingClassTest():hoRatio=0.10datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')normMat,ranges,minVals=autoNorm(datingDataMat)m=normMat.shape[0]numTestVecs=int(m*hoRatio)errorCount=0.0foriinrange(numTestVecs):classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)print('the classifier came back with: %d, the real answer is: %d'%(classifierResult,datingLabels[i]))if(classifierResult!=datingLabels[i]):errorCount+=1.0print('the total error rate is: %f'%(errorCount/float(numTestVecs)))defclassifyPerson():resultList=['not at all','in small doses','in large doses']percentTats=float(raw_input('percentage of time spent playing video games?'))ffMiles=float(raw_input('frequent flier miles earned per year?'))iceCream=float(raw_input('liters of ice cream consumed per year?'))datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')normMat,ranges,minVals=autoNorm(datingDataMat)inArr=array([ffMiles,percentTats,iceCream])classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)print('you will probably like this person:',resultList[classifierResult-1])datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')classifyPerson()fig=plt.figure()ax=fig.add_subplot(111)ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))plt.show()


K-最近邻算法总结


k 近邻算法是最简单有效的分类算法,必须全部保存全部数据集,如果训练数据集很大,必须使用大量的存储空间,同时由于必须对数据集中的每个数据计算距离值,实际使用可能非常耗时。 k 近邻算法无法给出任何数据的基础结构信息,我们无法知晓平均实例样本和典型实例样本具有神秘特征。


决策树


决策树 流程图正方形代表判断模块,椭圆形代表终止模块,从判断模块引出的左右箭头称作分支,它可以到达另一个判断模块活着终止模块。 决策树 [优点]:计算复杂度不高,输出结果易于理解,对于中间值的缺失不敏感,可以处理不相关特征数据。 决策树[缺点]:可能会产生过度匹配的问题。 决策树[适用数据类型]:数值型和标称型。


决策树的一般流程


(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们需要检验图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:使用于任何监督学习算法。

信息增益


划分数据集的最大原则:将无序的数据集变的有序。 判断数据集的有序程度:信息增益(熵),计算每个特征值划分数据集后获得的信息增益,获得信息增益最高的特征就是最好的选择。 信息增益[公式]:


image.png


其中 n 是分类的数目。

python 决策树

计算给定数据集的信息熵

frommathimportlogdefcalcShannonEnt(dataSet):numEntries=len(dataSet)labelCounts={}forfeatVecindataSet:currentLabel=featVec[-1]ifcurrentLabelnotinlabelCounts.keys():labelCounts[currentLabel]=0labelCounts[currentLabel]+=1shannonEnt=0.0forkeyinlabelCounts:prob=float(labelCounts[key])/numEntriesshannonEnt-=prob*log(prob,2)returnshannonEntdefcreateDataSet():dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no'],]labels=['no surfacing','flippers']returndataSet,labelsmyDat,labels=createDataSet()print(myDat)print(labels)shannonEnt=calcShannonEnt(myDat)print(shannonEnt)

划分数据集


importdtreedefsplitDataset(dataSet,axis,value):retDataSet=[]forfeatVecindataSet:iffeatVec[axis]==value:reducedFeatVec=featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])retDataSet.append(reducedFeatVec)returnretDataSetmyData,labels=dtree.createDataSet()print(myData)retDataSet=splitDataset(myData,0,1)print(retDataSet)retDataSet=splitDataset(myData,0,0)print(retDataSet)

选择最好的数据划分方式

defchooseBestFeatureToSplit(dataSet):numFeatures=len(dataSet[0])-1baseEntropy=dtree.calcShannonEnt(dataSet)bestInfoGain=0.0bestFeature=-1foriinrange(numFeatures):featList=[example[i]forexampleindataSet]uniqueVals=set(featList)newEntropy=0.0forvalueinuniqueVals:subDataSet=splitDataset(dataSet,i,value)prob=len(subDataSet)/float(len(dataSet))newEntropy+=prob*dtree.calcShannonEnt(subDataSet)infoGain=baseEntropy-newEntropyif(infoGain>bestInfoGain):bestInfoGain=infoGainbestFeature=ireturnbestFeaturemyData,labels=dtree.createDataSet()print('myData:',myData)bestFeature=chooseBestFeatureToSplit(myData)print('bestFeature:',bestFeature)
结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('bestFeature:', 0)
结果分析
运行结果表明第0个特征是最好用于划分数据集的特征,即数据集的的第一个参数,比如在该数据集中以第一个参数特征划分数据时,第一个分组中有3个,其中有一个被划分为no,第二个分组中全部属于no;当以第二个参数分组时,第一个分组中2个为yes,2个为no,第二个分类中只有一个no类。

递归构建决策树


工作原理:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于 2 个,因此可能存在大于 2 个分支的数据集划分,在第一次划分后,数据将被传向树分支的下一个节点,在这个节点上我们可以再次划分数据。 递归条件:程序遍历完所有划分数据集的属性,或者没个分支下的所有实例都具有相同的分类。


构建递归决策树

importdtreeimportoperatordefmajorityCnt(classList):classCount={}forvoteinclassList:ifvotenotinclassCount.keys():classCount[vote]=0classCount[vote]+=1sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)returnsortedClassCount[0][0]defcreateTree(dataSet,labels):classList=[example[-1]forexampleindataSet]ifclassList.count(classList[0])==len(classList):returnclassList[0]iflen(dataSet[0])==1:returnmajorityCnt(classlist)bestFeat=chooseBestFeatureToSplit(dataSet)bestFeatLabel=labels[bestFeat]myTree={bestFeatLabel:{}}del(labels[bestFeat])featValues=[example[bestFeat]forexampleindataSet]uniqueVals=set(featValues)forvalueinuniqueVals:subLabels=labels[:]myTree[bestFeatLabel][value]=createTree(splitDataset(dataSet,bestFeat,value),subLabels)returnmyTreemyData,labels=dtree.createDataSet()print('myData:',myData)myTree=createTree(myData,labels)print('myTree:',myTree)
结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('myTree:', {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}})


结果分析
myTree 包含了树结构信息的前套字典,第一个关键字no surfacing是第一个划分数据集的特征名称,值为另一个数据字典,第二个关键字是no surfacing特征划分的数据集,是no surfacing的字节点,如果值是类标签,那么该节点为叶子节点,如果值是另一个数据字典,那么该节点是个判断节点,如此递归。

测试算法:使用决策树执行分类

使用决策树的分类函数

importtreeplotterimportdtreedefclassify(inputTree,featLabels,testVec):firstStr=inputTree.keys()[0]secondDict=inputTree[firstStr]featIndex=featLabels.index(firstStr)forkeyinsecondDict.keys():iftestVec[featIndex]==key:iftype(secondDict[key]).__name__=='dict':classLabel=classify(secondDict[key],featLabels,testVec)else:classLabel=secondDict[key]returnclassLabelmyDat,labels=dtree.createDataSet()print(labels)myTree=myTree=treeplotter.retrieveTree(0)print(myTree)print('classify(myTree,labels,[1,0]):',classify(myTree,labels,[1,0]))print('classify(myTree,labels,[1,1]):',classify(myTree,labels,[1,1]))
结果输出
['no surfacing', 'flippers']
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 'maybe'}}
('classify(myTree,labels,[1,0]):', 'no')
('classify(myTree,labels,[1,1]):', 'yes')

存储决策树


由于决策树的构造十分耗时,所以用创建好的决策树解决分类问题可以极大的提高效率。因此需要使用 python 模块 pickle 序列化对象,序列化对象可以在磁盘上保存对象,并在需要的地方读取出来,任何对象都可以执行序列化操作。

# 使用pickle模块存储决策树importpickledefstoreTree(inputTree,filename):fw=open(filename,'w')pickle.dump(inputTree,fw)fw.close()defgrabTree(filename):fr=open(filename)returnpickle.load(fr)


结果展示(Kmeans):


3803651c1798f7347261356b451463e3.png

6ccb6c082e6b39ffbb16092ef6de0d51.png




相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
39 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
23天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
159 80
|
11天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
14天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
59 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
11天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
30 9
|
17天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
19天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
18天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
13天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章