基于Python GUI开发的快递管理系统

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
简介: 基于Python GUI开发的快递管理系统

摘要: 着网络新零售的到来,传统物流在网购的洗礼下迅速蜕变,在这场以互联网为基础的时代变革中,哪家企业能率先转变其工作模式就能最先分得一杯羹,物流管理也不例外。传统的物流管理模式效率低下,不仅耗费大量的人力物力,信息维护也极易出现错误。近年来物流管理系统逐步在全国范围内实施使用,它的实现使用户足不出户即可完成寄件、查件等业务,同时也方便物流公司对海量物流数据的处理,是物流管理发展中一个重要的里程碑。

本文实现的快递业务管理系统管理系统,采用 C/S 网络架构进行设计,客户端发送请求获取功能操作,内部实现则由服务器端完成。开发时选用 Python 语言来提升开发效率。前台页面使用 Tkinter GUI 实现,后台数据库采用 SQL server 2008 R2,使用 Pymssql 连接 SQL server 服务器。该系统包括基本的查件、寄件、用户管理、快递管理、最优路径选择五个模块,可以满足小型快递业务管理的日常运作需求。系统实现后还通过大量的测试用例检验系统的可靠性,以便给用户带来最佳的使用感。

关键词:快递业务管理系统;Python;PyMssql; SQL server;Tkinter

Sql1:用于查询语句 有返回值 sql2: 用于增加 删除 修改 无返回值


登录界面



7e3ab130c32d044d84b57c6e289d4c7b.png

注册界面


a045536a054de742d3df484825f322a5.png

主界面



b7df68f6274051edbfbfaf3ebb5260f5.png



3be4b6ae6482670ba3feb31164a55cd9.png


31e73e0b86163f5f6ca23b47bdd9f002.png

邮寄界面


ccf79a17ac62127b170d7fe311616064.png


键查询界面



984364f482eb1053999bb1218a05c963.png


查件界面

71f26e536deaacac8332f884fd5b8cec.png

管理界面


eaf7ec88a265bc55f7ffedd970cc1828.png


测试方法


系统测试就是通过测试用例对系统进行运行验证,若运行结果与预期结果一致则通过测试,否则该功能测试失败需对其进行改进。通常来说,一个功能模块要设计多个测试用例,测试方法采用白盒测试和黑盒测试结合进行。白盒测试即对系统的业务逻辑进行测试,确保每个功能的业务流与预期一致。黑盒测试即验证系统的功能是否与需求分析阶段的内容一致,能否满足使用要求[14]。


该系统在开发过程中实现了单元测试并对相应的代码块进行断点调试测试。在单元测试的基础上又对各代码块进行了集成测试,验证代码块集成后的功能模块的正确性。最后进行系统测试,对各模块集成后的系统进行测试,包括权限测试、功能测试、备份测试等。


系统在面向大众使用前经过了严格的测试,以确保提交给用户的产品不存在问题,能给用户带来最好的使用感。


测试环境


客户端环境:惠普 笔记本电脑、16GB 运行内存、256G SSD 硬盘;软件配置采用 window10 操作系统,Python 3.8 模块 PyMssql (配置 python 环境变量后,在 cmd 窗口输入 pip3 install pymssql 安装)


服务器环境:数据库采用 SQL SERVER 2008 R2,数据库名 kd,用户名 sa 密码 1


完整代码:https://download.csdn.net/download/qq_38735017/87416134


相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情: https://www.aliyun.com/product/rds/sqlserver
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
68 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
16天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
15天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
11天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
24 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
5天前
|
数据采集 存储 XML
构建高效的Python爬虫系统
【9月更文挑战第30天】在数据驱动的时代,掌握如何快速高效地获取网络信息变得至关重要。本文将引导读者了解如何构建一个高效的Python爬虫系统,从基础概念出发,逐步深入到高级技巧和最佳实践。我们将探索如何使用Python的强大库如BeautifulSoup和Scrapy,以及如何应对反爬措施和提升爬取效率的策略。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的知识和技能,帮助你在信息收集的海洋中航行得更远、更深。
19 6
|
8天前
|
Linux Android开发 iOS开发
开源的Python库,用于开发多点触控应用程序
Kivy是一款开源Python库,专为开发多点触控应用设计,支持Android、iOS、Linux、OS X和Windows等平台。本文将指导你使用Kivy创建“Hello World”应用并打包成Android APK。首先通过`pip install kivy`安装Kivy,然后创建并运行一个简单的Python脚本。接着,安装Buildozer并通过`buildozer init`生成配置文件,修改相关设置后,运行`buildozer -v android debug`命令打包应用。完成构建后,你将在`./bin/`目录下找到类似`your-app-debug.apk`的文件。
14 2
|
13天前
|
机器学习/深度学习 数据挖掘 测试技术
自学Python的系统策略与步骤
通过遵循这些步骤和策略,你可以系统地自学Python,并有效地构建和深化你的编程知识和技能。
18 6
|
13天前
|
SQL 安全 Go
SQL注入不可怕,XSS也不难防!Python Web安全进阶教程,让你安心做开发!
在Web开发中,安全至关重要,尤其要警惕SQL注入和XSS攻击。SQL注入通过在数据库查询中插入恶意代码来窃取或篡改数据,而XSS攻击则通过注入恶意脚本来窃取用户敏感信息。本文将带你深入了解这两种威胁,并提供Python实战技巧,包括使用参数化查询和ORM框架防御SQL注入,以及利用模板引擎自动转义和内容安全策略(CSP)防范XSS攻击。通过掌握这些方法,你将能够更加自信地应对Web安全挑战,确保应用程序的安全性。
43 3
|
11天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
31 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
8天前
|
iOS开发 Python
6-8|如何使用Python语言开发IOS混淆工具
6-8|如何使用Python语言开发IOS混淆工具
下一篇
无影云桌面