嵌入式ARM设计编程(四) ARM启动过程控制

简介: 嵌入式ARM设计编程(四) ARM启动过程控制
文章和代码已归档至【Github仓库: hardware-tutorial】,需要的朋友们自取。或者关注公众号【AIShareLab】,回复 嵌入式 也可获取。

一、实验目的

(1) 掌握建立基本完整的ARM 工程,包含启动代码,C语言程序等;

(2) 了解ARM启动过程,学会编写简单的C 语言程序和汇编启动代码并进行调试;

(3) 掌握如何指定代码入口地址与入口点;

(4) 掌握通过memory/register/watch/variable 窗口分析判断结果。

二、实验环境

硬件:PC机。

软件:ADS1.2 集成开发环境

三、实验内容

使用汇编语言编写初始化程序,并引导至C语言main函数,用汇编语言编写延时函数实现毫秒级的延时,在C语言中调用延时函数,实现1s钟定时。

四、实验要求

(1) 在ADS下创建一个工程armasmc,编写3个文件,如下图所示:

其中一个初始化汇编语言文件Init.s,该文件中主要完成异常矢量表的建立,模式堆栈初始化,并将程序引导至C语言的main函数。

C语言程序保存为armasmc.c。 C语言中调用汇编语言文件delay.s中的毫秒延时程序delayxms,C语言将延时的毫秒数通过参数传递到汇编语言,汇编语言完成延时,然后返回C语言函数。

通过AXD运用单步执行方式调试程序。观察程序执行过程中的寄存器及存储器的变化情况。

(2)实验过程中请记录并思考以下内容:

1)如何建立异常矢量入口表?

2)如何在汇编语言中切换至C语言的main函数?。

3)如何在C语言中调用汇编语言函数,并完成参数传递?

4)汇编语言函数中用到的寄存器如何保护与恢复,为什么要保护参考程序中的R11?

5)将delay.s中的R11改成R4,并将两条R11 的保护与恢复语句stmfd sp!,{r11} 和ldmfd sp!,{r11}删掉,在C语言程序中的语句i--处设置端点,观察运行过程中变量i的变化情况,并解释其中的原因。

五、实验情况:

1、实验源代码(含注释):

Init.s代码:

;************************ entry.s ****************************
 IMPORT Main  ;在汇编程序调用该c程序前要在汇编语言程序中使用IMPORT伪操作来声明该c程序

  area Init,code,readonly   ;定义CODE片段Init 只读 
  entry     ;设置程序入口伪指令
  code32   ;以下为32位的ARM程序
; *********** Setup interrupt/exception vector *******************
start              b Reset_Handler        ;异常矢量表,根据异常矢量表进入不同模式的中断程序      
Undefined_Handler  b Undefined_Handler
SWI_Handler        b SWI_Handler
Prefetch_handler   b Prefetch_handler
Abort_Handler      b Abort_Handler
                   nop   ;Reserved vector
IRQ_Handler        b IRQ_Handler
FIQ_Handler        b FIQ_Handler

Reset_Handler     ;Reset中断,为整个中断的实际入口点        
             bl initstack    ;初始化各模式下的堆栈指针
                             
             ;切换至用户模式堆    
             msr cpsr_c,#0xd0    ;110  10000
                 
             bl Main

halt  b halt

initstack    mov r0,lr   ;r0<--lr,因为各种模式下r0是相同的而各个模式?                            
                                   
             ;设置管理模式堆栈
             msr cpsr_c,#0xd3    ;110  10011  
             ldr sp,stacksvc
               
             ;设置中断模式堆栈
             msr cpsr_c,#0xd2    ;110  10010
             ldr sp,stackirq  
             
             ;设置快速中断模式堆栈
             msr cpsr_c,#0xd1    ;110  10001
             ldr sp,stackfiq
                                
             ;设置中止模式堆栈      
             msr cpsr_c,#0xd7    ;110  10111
             ldr sp,stackabt
                                    
            ;设置未定义模式堆栈   
             msr cpsr_c,#0xdb    ;110  11011
             ldr sp,stackund
   
             ;设置系统模式堆栈    
             msr cpsr_c,#0xdf    ;110  11111
             ldr sp,stackusr
             
             mov pc,r0 ;返回
         
  LTORG      

stackusr     dcd  usrstackspace+128
stacksvc     dcd  svcstackspace+128
stackirq     dcd  irqstackspace+128
stackfiq     dcd  fiqstackspace+128
stackabt     dcd  abtstackspace+128
stackund     dcd  undstackspace+128

  area Interrupt,data,READWRITE  ;分配堆栈空间
usrstackspace space 128
svcstackspace space 128
irqstackspace space 128
fiqstackspace space 128
abtstackspace space 128
undstackspace space 128
     
       end

delay.s代码:

;************************* delay.s *****************************
  EXPORT delayxms ;EXPORT伪指令用于在程序中声明一个全局的标号,该标号可在其他的文件中引用
  area delay,code,readonly  ;定义code片段delay只读
  code32  ;以下为32位的ARM程序
  
;下面是延时若干ms的子程序      
delayxms
     stmfd sp!,{r11} ; 寄存器入栈
     sub r0,r0,#1 ;r0=r0-1
     ldr r11,=1000 ;加载至r11中
loop2
     sub r11,r11,#1 ;每次将r11自减一
     cmp r11,#0x0 ;将r11与0比较
     bne loop2  ;比较的结果不为0,则继续调用loop2  
     cmp r0,#0x0    ;将r0与0比较
     bne delayxms   ;比较的结果不为0,则继续调用delayxms
     ldmfd sp!,{r11};
     mov pc,lr;返回
     
     end

armasmc.c代码:

//*************************armasmc.c******************************
#include <stdio.h>
int Main()
{  
  extern void delayxms(int xms);  //在C程序调用汇编程序之前需要在C语言程序中使用extern关键词来声明该汇编程序
  
  int i=100;
  
  while(1)
  {
     delayxms(1000); // 调用delayxms汇编程序
     i--;
     if(i==0)
       i=100;
  }
  return 0;
}

2、实验过程(含结果截图及相应文字解释):

1.如何建立异常矢量入口表?

答:建立异常矢量入口表需要设置中断类型号,并且要设置中断服务子程序段地址,以根据异常矢量表进入不同模式的中断程序。在实验程序中也有定义:

2.如何在汇编语言中切换至C语言的main函数?

答:由上代码可知,为保证程序调用时参数的正确传递,汇编程序设计要遵守ATPCS(ARM-Thumb Produce Call Standard),它是ARM程序和Thumb程序中子程序调用的基本规则,目的是为了使单独编译的C语言程序和汇编程序之间能够相互调用。这些基本规则包括子程序调用过程中寄存器的使用规则、数据栈的使用规则和参数的传递规则。在C程序中不需要任何关键字来声明将被汇编语言调用的C程序,但需要在汇编语言程序之前使用IMPORT伪操作来声明该C程序。在汇编程序中通过BL指令来调用子程序。同时,汇编程序可以通过地址间接访问在C语言程序中声明的全局变量。通过使用IMPORT关键词引入全局变量,并利用LDR和STR指令根据全局变量的地址可以访问它们。

3.如何在C语言中调用汇编语言函数,并完成参数传递?

答:为了保证程序调用时参数的正确传递,汇编程序设计要遵守ATPCS。在汇编程序中需要使用EXPORT伪操作来声明,同时,在C程序中调用该汇编程序之前需要在C语言程序中使用extern关键词来声明该汇编程序。

4.汇编语言函数中用到的寄存器如何保护与恢复,为什么要保护参考程序中的R11?

答:汇编语言函数中用到的寄存器通过压栈来保护,出栈来恢复。根据ATPCS规则,R11对应ARM 状态局部变量寄存器8,R11中含有循环次数的重要参量,因此要保护R11避免在程序运行与调用过程中受到影响而导致程序异常。

5.将delay.s中的R11改成R4,并将两条R11 的保护与恢复语句stmfd sp!,{r11} 和ldmfd sp!,{r11}删掉,在C语言程序中的语句i--处设置端点,观察运行过程中变量i的变化情况,并解释其中的原因。

修改程序如下:

答:由上可知R4对应局部变量寄存器1,即变量i,因此在子程序delay.s中,R4的值减为0,若不进行保护,则返回C程序后自减-1,导致变量i的值变为-1,此时将无法满足0的条件,也就无法执行if,导致i会一直递减下去,最终无法停止。

六、总结

本次有关汇编与C语言相互调用的部分,建立异常矢量入口表的方法,即需要设置中断类型号,并且要设置中断服务子程序段地址,以根据异常矢量表进入不同模式的中断程序。此外,还有ARM程序和Thumb程序中子程序调用的基本规则ATPCS(ARM-Thumb Produce Call Standard),目的是为了使单独编译的C语言程序和汇编程序之间能够相互调用。这些基本规则包括子程序调用过程中寄存器的使用规则、数据栈的使用规则和参数的传递规则,为调用提供了相关的规范。其中汇编程序访问全局C变量的方法是:汇编程序可以通过地址间接访问在C语言程序中声明的全局变量。通过使用IMPORT关键词引入全局变量,并利用LDR和STR指令根据全局变量的地址可以访问它们。在C语言程序中调用汇编程序的方法是:在汇编程序中需要使用EXPORT伪操作来声明,使得本程序可以被其它程序调用。同时,在C程序调用该汇编程序之前需要在C语言程序中使用extern关键词来声明该汇编程序。而在汇编程序中调用C语言程序的方法是:在C程序中不需要使用任何关键字来声明将被汇编语言调用的C程序,但是在汇编程序调用该C程序之前需要在汇编语言程序中使用IMPORT伪操作来声明该C程序。在汇编程序中通过BL指令来调用子程序。


欢迎关注公众号【AIShareLab】,一起交流更多相关知识,前沿算法,Paper解读,项目源码,面经总结。

目录
相关文章
|
2月前
|
数据处理
基于ARM的嵌入式原理与应用:ALU的功能与特点
基于ARM的嵌入式原理与应用:ALU的功能与特点
196 0
|
6月前
|
存储 Ubuntu 编译器
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(三)
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(三)
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(三)
|
6月前
|
Ubuntu Unix Linux
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(一)
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(一)
|
6月前
|
Linux 编译器 语音技术
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(二)
合肥中科深谷嵌入式项目实战——基于ARM语音识别的智能家居系统(二)
|
5月前
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
|
6月前
|
存储 算法 Linux
详细解读ARM嵌入式整理
详细解读ARM嵌入式整理
48 0
|
7月前
|
安全 Unix Linux
【ARM】在NUC977上搭建基于boa的嵌入式web服务器
【ARM】在NUC977上搭建基于boa的嵌入式web服务器
190 0
|
26天前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
|
2月前
|
编解码 弹性计算 应用服务中间件
阿里云服务器Arm计算架构解析:Arm计算架构云服务器租用收费标准价格参考
阿里云服务器架构分为X86计算、Arm计算、高性能计算等多种架构,其中Arm计算架构以其低功耗、高效率的特点受到广泛关注。本文将深入解析阿里云Arm计算架构云服务器的技术特点、适用场景以及包年包月与按量付费的收费标准与最新活动价格情况,以供选择参考。
|
2月前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。