基于PyTorch框架的模型训练调优

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 基于PyTorch框架的模型训练调优

PyTorch框架全景介绍:


性能分析工具pytorch profiling


性能分析工具cann profiling


pytorch模型参数迁移(三种方法):


方法一:将原来预训练好的模型参数迁移到新的resnet18网络架构中,只有迁移两者相同的模型参数,不同的参数还是随机初始化。


方法二:修改网络名称并迁移学习


方法三:去除原模型的某些模块


在npu上训练,必须使用混合精度


一般来说,衡量模型性能的数据是看单step单位时间内的数据吞吐量


查看模型算子耗时的工具是cann profiling


宏观查看模型性能的工具是pytorch profiling


cann profiling的模型性能数据比pytorch profiling的更准确。


以下方法可以提升模型性能:


arm架构下绑核启动程序


使用融合优化器


使用npu亲和算子


有动态shape的模型,可以使用如下方法进行训练:


固定shape


模糊编译


分档


arm架构下,使用绑核的方式启动模型训练,性能会得到一定的提升。


第一次训练模型启动比较慢,是因为模型在编译,第二次启动训练,速度会明显提升。


相关文章
|
11天前
|
人工智能 自然语言处理 算法
MT-MegatronLM:国产训练框架逆袭!三合一并行+FP8黑科技,大模型训练效率暴涨200%
MT-MegatronLM 是摩尔线程推出的面向全功能 GPU 的开源混合并行训练框架,支持多种模型架构和高效混合并行训练,显著提升 GPU 集群的算力利用率。
72 18
|
2月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
256 66
|
6天前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
27 2
|
1月前
|
机器学习/深度学习 算法 安全
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
本文详细介绍了DeepSeek R1模型的构建过程,涵盖从基础模型选型到多阶段训练流程,再到关键技术如强化学习、拒绝采样和知识蒸馏的应用。
239 3
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
|
5月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
785 2
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
138 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
2月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
108 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
TorchOptimizer:基于贝叶斯优化的PyTorch Lightning超参数调优框架
TorchOptimizer 是一个基于贝叶斯优化方法的超参数优化框架,专为 PyTorch Lightning 模型设计。它通过高斯过程建模目标函数,实现智能化的超参数组合选择,并利用并行计算加速优化过程。该框架支持自定义约束条件、日志记录和检查点机制,显著提升模型性能,适用于各种规模的深度学习项目。相比传统方法,TorchOptimizer 能更高效地确定最优超参数配置。
219 7
|
3月前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
158 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch

热门文章

最新文章

相关产品

  • 人工智能平台 PAI