数据结构——B树和B+树

简介: 数据结构——B树和B+树

文章目录


1 B树

1.1 B树的特征

1.2 B树存储数据

1.3 B树在磁盘文件中的应用

1.3.1 磁盘

1.3.2 磁盘IO

2 B+树

2.1 B+树存储数据

2.2 B+树 和 B树的对比

2.3 B+树在数据库中的应用

2.3.1 未建立主键索引查询

2.3.2 建立主键索引查询

2.3.3 区间查询


1 B树


B树是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(logn)的时间复杂度进行查找、顺序读取、插入和删除等操作。


1.1 B树的特征


B树中允许一个结点中包含多个key,可以是3个、4个、5个甚至更多,并不确定,需要看具体的实现。现在我们选择一个参数M,来构造一个B树,我们可以把它称作是M阶的B树,那么该树会具有如下特点:


每个结点最多有M-1个key,并且以升序排列;

每个结点最多能有M个子结点;

根结点至少有两个子结点;

1.png

在实际应用中B树的阶数一般都比较大(通常大于100),所以,即使存储大量的数据,B树的高度仍然比较小,这样在某些应用场景下,就可以体现出它的优势。


1.2 B树存储数据


若参数M选择为5,那么每个结点最多包含4个键值对,我们以5阶B树为例,看看B树的数据存储。

1.png



1.3 B树在磁盘文件中的应用


在我们的程序中,不可避免的需要通过IO操作文件,而我们的文件是存储在磁盘上的。计算机操作磁盘上的文件是通过文件系统进行操作的,在文件系统中就使用到了B树这种数据结构。


1.3.1 磁盘


磁盘能够保存大量的数据,从GB一直到TB级,但是 他的读取速度比较慢,因为涉及到机器操作,读取速度为毫秒级 。

image.png

磁盘由盘片构成,每个盘片有两面,又称为盘面 。盘片中央有一个可以旋转的主轴,他使得盘片以固定的旋转速率旋转,通常是5400rpm或者是7200rpm,一个磁盘中包含了多个这样的盘片并封装在一个密封的容器内 。盘片的每个表面是由一组称为磁道同心圆组成的 ,每个磁道被划分为了一组扇区 ,每个扇区包含相等数量的数据位,通常是512个子节,扇区之间由一些间隙隔开,这些间隙中不存储数据 。


1.3.2 磁盘IO


1.png

磁盘用磁头来读写存储在盘片表面的位,而磁头连接到一个移动臂上,移动臂沿着盘片半径前后移动,可以将磁头定位到任何磁道上,这称之为寻道操作。一旦定位到磁道后,盘片转动,磁道上的每个位经过磁头时,读写磁头就可以感知到该位的值,也可以修改值。对磁盘的访问时间分为 寻道时间,旋转时间,以及传送时间。


由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,因此为了提高效率,要尽量减少磁盘I/O,减少读写操作。 为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此预读可以提高I/O效率。


页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(1024个字节或其整数倍),预读的长度一般为页的整倍数。主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。


文件系统的设计者利用了磁盘预读原理,将一个结点的大小设为等于一个页(1024个字节或其整数倍),这样每个结点只需要一次I/O就可以完全载入。那么3层的B树可以容纳102410241024差不多10亿个数据,如果换成二叉查找树,则需要30层!假定操作系统一次读取一个节点,并且根节点保留在内存中,那么B树在10亿个数据中查找目标值,只需要小于3次硬盘读取就可以找到目标值,但红黑树需要小于30次,因此B树大大提高了IO的操作效率。


2 B+树


B+树是对B树的一种变形树,它与B树的差异在于:


非叶结点仅具有索引作用,也就是说,非叶子结点只存储key,不存储value;

树的所有叶结点构成一个有序链表,可以按照key排序的次序遍历全部数据。


2.1 B+树存储数据


若参数M选择为5,那么每个结点最多包含4个键值对,我们以5阶B+树为例,看看B+树的数据存储。

image.png


2.2 B+树 和 B树的对比


B+ 树的优点在于:


由于B+树在非叶子结点上不包含真正的数据,只当做索引使用,因此在内存相同的情况下,能够存放更多的 key。

B+树的叶子结点都是相连的,因此对整棵树的遍历只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。


B树的优点在于:


由于B树的每一个节点都包含key和value,因此我们根据key查找value时,只需要找到key所在的位置,就能找到 value,但B+树只有叶子结点存储数据,索引每一次查找,都必须一次一次,一直找到树的最大深度处,也就是叶子结点的深度,才能找到value。


2.3 B+树在数据库中的应用


在数据库的操作中,查询操作可以说是最频繁的一种操作,因此在设计数据库时,必须要考虑到查询的效率问题,在很多数据库中,都是用到了B+树来提高查询的效率;


在操作数据库时,我们为了提高查询效率,可以基于某张表的某个字段建立索引,就可以提高查询效率,那其实这个索引就是B+树这种数据结构实现的。


2.3.1 未建立主键索引查询


1.png

执行select * from user where id=18,需要从第一条数据开始,一直查询到第6条,发现id=18,此时才能查询出目标结果,共需要比较6次;


2.3.2 建立主键索引查询


1.png

2.3.3 区间查询


执行select * from user where id>=12 and id<=18,如果有了索引,由于B+树的叶子结点形成了一个有序链表,所以我们只需要找到id为12的叶子结点,按照遍历链表的方式顺序往后查即可,效率非常高。





相关文章
|
1月前
|
存储 算法 搜索推荐
探索常见数据结构:数组、链表、栈、队列、树和图
探索常见数据结构:数组、链表、栈、队列、树和图
103 64
|
20天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
60 16
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
24 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
1月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(三)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
1月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(二)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
1月前
|
存储
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(一)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
2月前
|
JSON 前端开发 JavaScript
一文了解树在前端中的应用,掌握数据结构中树的生命线
该文章详细介绍了树这一数据结构在前端开发中的应用,包括树的基本概念、遍历方法(如深度优先遍历、广度优先遍历)以及二叉树的先序、中序、后序遍历,并通过实例代码展示了如何在JavaScript中实现这些遍历算法。此外,文章还探讨了树结构在处理JSON数据时的应用场景。
一文了解树在前端中的应用,掌握数据结构中树的生命线
|
1月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
32 0