3 线程间通信
线程间通信的模型有两种:共享内存和消息传递,以下方式都是基本这两种模
型来实现的。我们来基本一道面试常见的题目来分析
场景---两个线程,一个线程对当前数值加 1,另一个线程对当前数值减 1,要求用线程间通信
3.1 synchronized 方案
package com.atguigu.test;
class DemoClass{
//加减对象
private int number = 0;
/**
* 加 1
*/
public synchronized void increment() {
try {
while (number != 0){
this.wait();
}
number++; System.out.println("--------" + Thread.currentThread().getName() + "加一成
功----------,值为:" + number);
notifyAll();
}catch (Exception e){
e.printStackTrace();
}
}
/**
* 减一
*/
public synchronized void decrement(){
try {
while (number == 0){
this.wait();
}
number--;
System.out.println("--------" + Thread.currentThread().getName() + "减一成
功----------,值为:" + number);
notifyAll();
}catch (Exception e){
e.printStackTrace();
}
}
}
3.2 Lock 方案
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
class DemoClass{
//加减对象
private int number = 0;
//声明锁
private Lock lock = new ReentrantLock();
//声明钥匙
private Condition condition = lock.newCondition();
/**
* 加 1
*/
public void increment() {
try {
lock.lock();
while (number != 0){
condition.await();
}
number++; System.out.println("--------" + Thread.currentThread().getName() + "加一成
功----------,值为:" + number);
condition.signalAll();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
/**
* 减一
*/
public void decrement(){
try {
lock.lock();
while (number == 0){
condition.await();
}
number--;
System.out.println("--------" + Thread.currentThread().getName() + "减一成
功----------,值为:" + number);
condition.signalAll();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock(); }
}
}
3.4 线程间定制化通信
3.4.1 案例介绍
==问题: A 线程打印 5 次 A,B 线程打印 10 次 B,C 线程打印 15 次 C,按照
此顺序循环 10 轮==
3.4.2 实现流程
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
class DemoClass{
//通信对象:0--打印 A 1---打印 B 2----打印 C
private int number = 0;
//声明锁
private Lock lock = new ReentrantLock();
//声明钥匙 A
private Condition conditionA = lock.newCondition();
//声明钥匙 B
private Condition conditionB = lock.newCondition();
//声明钥匙 C
private Condition conditionC = lock.newCondition(); /**
* A 打印 5 次
*/
public void printA(int j){
try {
lock.lock();
while (number != 0){
conditionA.await();
}
System.out.println(Thread.currentThread().getName() + "输出 A,第" + j + "
轮开始");
//输出 5 次 A
for (int i = 0; i < 5; i++) {
System.out.println("A");
}
//开始打印 B
number = 1;
//唤醒 B
conditionB.signal();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
} /**
* B 打印 10 次
*/
public void printB(int j){
try {
lock.lock();
while (number != 1){
conditionB.await();
}
System.out.println(Thread.currentThread().getName() + "输出 B,第" + j + "
轮开始");
//输出 10 次 B
for (int i = 0; i < 10; i++) {
System.out.println("B");
}
//开始打印 C
number = 2;
//唤醒 C
conditionC.signal();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
} /**
* C 打印 15 次
*/
public void printC(int j){
try {
lock.lock();
while (number != 2){
conditionC.await();
}
System.out.println(Thread.currentThread().getName() + "输出 C,第" + j + "
轮开始");
//输出 15 次 C
for (int i = 0; i < 15; i++) {
System.out.println("C");
}
System.out.println("-----------------------------------------");
//开始打印 A
number = 0;
//唤醒 A
conditionA.signal();
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
} }
}
测试类
package com.atguigu.test;
/**
* volatile 关键字实现线程交替加减
*/
public class TestVolatile {
/**
* 交替加减
* @param args
*/
public static void main(String[] args){
DemoClass demoClass = new DemoClass();
new Thread(() ->{
for (int i = 1; i <= 10; i++) {
demoClass.printA(i);
}
}, "A 线程").start();
new Thread(() ->{
for (int i = 1; i <= 10; i++) { demoClass.printB(i);
}
}, "B 线程").start();
new Thread(() ->{
for (int i = 1; i <= 10; i++) {
demoClass.printC(i);
}
}, "C 线程").start();
}
}
4 集合的线程安全
4.1 集合操作 Demo
NotSafeDemo
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
/**
* 集合线程安全案例
*/
public class NotSafeDemo {
/**
* 多个线程同时对集合进行修改
* @param args
*/
public static void main(String[] args) {
List list = new ArrayList();
for (int i = 0; i < 100; i++) {
new Thread(() ->{
list.add(UUID.randomUUID().toString());
System.out.println(list);
}, "线程" + i).start();
}
}
}
异常内容
java.util.ConcurrentModificationException
问题: 为什么会出现并发修改异常?
查看 ArrayList 的 add 方法源码
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
==那么我们如何去解决 List 类型的线程安全问题?==
4.2 Vector
Vector 是矢量队列,它是 JDK1.0 版本添加的类。继承于 AbstractList,实现
了 List, RandomAccess, Cloneable 这些接口。 Vector 继承了 AbstractList,
实现了 List;所以,它是一个队列,支持相关的添加、删除、修改、遍历等功
能。 Vector 实现了 RandmoAccess 接口,即提供了随机访问功能。
RandmoAccess 是 java 中用来被 List 实现,为 List 提供快速访问功能的。在
Vector 中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访
问。 Vector 实现了 Cloneable 接口,即实现 clone()函数。它能被克隆。
==和 ArrayList 不同,Vector 中的操作是线程安全的。==
NotSafeDemo 代码修改
import java.util.List;
import java.util.UUID;
import java.util.Vector;
/**
* 集合线程安全案例
*/
public class NotSafeDemo {
/**
* 多个线程同时对集合进行修改
* @param args
*/
public static void main(String[] args) {
List list = new Vector();
for (int i = 0; i < 100; i++) {
new Thread(() ->{
list.add(UUID.randomUUID().toString());
System.out.println(list);
}, "线程" + i).start();
}
}
}
现在没有运行出现并发异常,为什么?
查看 Vector 的 add 方法
/**
* Appends the specified element to the end of this Vector.
*
* @param e element to be appended to this Vector
* @return {@code true} (as specified by {@link Collection#add})
* @since 1.2
*/
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
add 方法被 synchronized 同步修辞,线程安全!因此没有并发异常
4.3 Collections
Collections 提供了方法 synchronizedList 保证 list 是同步线程安全的
NotSafeDemo 代码修改
import java.util.*;
/**
* 集合线程安全案例
*/
public class NotSafeDemo {
/**
* 多个线程同时对集合进行修改
* @param args
*/
public static void main(String[] args) {
List list = Collections.synchronizedList(new ArrayList<>());
for (int i = 0; i < 100; i++) {
new Thread(() ->{
list.add(UUID.randomUUID().toString());
System.out.println(list);
}, "线程" + i).start();
}
}
}
没有并发修改异常
查看方法源码
/**
* Returns a synchronized (thread-safe) list backed by the specified
* list. In order to guarantee serial access, it is critical that
* <strong>all</strong> access to the backing list is accomplished
* through the returned list.<p>
*
* It is imperative that the user manually synchronize on the returned
* list when iterating over it:
* <pre>
* List list = Collections.synchronizedList(new ArrayList());
* ...
* synchronized (list) {
* Iterator i = list.iterator(); // Must be in synchronized block
* while (i.hasNext())
* foo(i.next());
* }
* </pre>
* Failure to follow this advice may result in non-deterministic behavior.
*
* <p>The returned list will be serializable if the specified list is
* serializable.
*
* @param <T> the class of the objects in the list
* @param list the list to be "wrapped" in a synchronized list.
* @return a synchronized view of the specified list.
*/
public static <T> List<T> synchronizedList(List<T> list) {
return (list instanceof RandomAccess ?
new SynchronizedRandomAccessList<>(list) :
new SynchronizedList<>(list));
}
4.4 CopyOnWriteArrayList(重点)
首先我们对 CopyOnWriteArrayList 进行学习,其特点如下:
它相当于线程安全的 ArrayList。和 ArrayList 一样,它是个可变数组;但是和
ArrayList 不同的时,它具有以下特性:
1. 它最适合于具有以下特征的应用程序:List 大小通常保持很小,只读操作远多
于可变操作,需要在遍历期间防止线程间的冲突。
2. 它是线程安全的。
3. 因为通常需要复制整个基础数组,所以可变操作(add()、set() 和 remove()
等等)的开销很大。
4. 迭代器支持 hasNext(), next()等不可变操作,但不支持可变 remove()等操作。
5. 使用迭代器进行遍历的速度很快,并且不会与其他线程发生冲突。在构造迭代
器时,迭代器依赖于不变的数组快照。
1. 独占锁效率低:采用读写分离思想解决
2. 写线程获取到锁,其他写线程阻塞
3. 复制思想:当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容
器进行 Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素
之后,再将原容器的引用指向新的容器。
这时候会抛出来一个新的问题,也就是数据不一致的问题。如果写线程还没来
得及写会内存,其他的线程就会读到了脏数据。
==这就是 CopyOnWriteArrayList 的思想和原理。就是拷贝一份。==
NotSafeDemo 代码修改
import java.util.*;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 集合线程安全案例
*/
public class NotSafeDemo {
/**
* 多个线程同时对集合进行修改
* @param args
*/
public static void main(String[] args) {
List list = new CopyOnWriteArrayList();
for (int i = 0; i < 100; i++) {
new Thread(() ->{
list.add(UUID.randomUUID().toString());
System.out.println(list);
}, "线程" + i).start();
}
}
}
没有线程安全问题
原因分析(重点):==动态数组与线程安全==
下面从“动态数组”和“线程安全”两个方面进一步对
CopyOnWriteArrayList 的原理进行说明。
•
“动态数组”机制
o 它内部有个“volatile 数组”(array)来保持数据。在“添加/修改/删除”数据
时,都会新建一个数组,并将更新后的数据拷贝到新建的数组中,最后再将该
数组赋值给“volatile 数组”, 这就是它叫做 CopyOnWriteArrayList 的原因
o 由于它在“添加/修改/删除”数据时,都会新建数组,所以涉及到修改数据的
操作,CopyOnWriteArrayList 效率很低;但是单单只是进行遍历查找的话,
效率比较高。
•
“线程安全”机制
o 通过 volatile 和互斥锁来实现的。
o 通过“volatile 数组”来保存数据的。一个线程读取 volatile 数组时,总能看
到其它线程对该 volatile 变量最后的写入;就这样,通过 volatile 提供了“读
取到的数据总是最新的”这个机制的保证。
o 通过互斥锁来保护数据。在“添加/修改/删除”数据时,会先“获取互斥锁”,
再修改完毕之后,先将数据更新到“volatile 数组”中,然后再“释放互斥
锁”,就达到了保护数据的目的。
4.5 小结(重点)
1.线程安全与线程不安全集合
集合类型中存在线程安全与线程不安全的两种,常见例如:
ArrayList ----- Vector
HashMap -----HashTable
但是以上都是通过 synchronized 关键字实现,效率较低
2.Collections 构建的线程安全集合3.java.util.concurrent 并发包下
CopyOnWriteArrayList CopyOnWriteArraySet 类型,通过动态数组与线程安
全个方面保证线程安全