交易所开发系统如何采用分布式架构(国王小组)

简介: 交易所开发系统如何采用分布式架构(国王小组)

交易所开发系统如何采用分布式架构(国王小组)
,涉及到的编程语言有:C++、C#、NodeJS,数据库采用MySql,通讯中间件采用ZeroMQ。选择C++的原因有二点,首先考虑到与交易所接口兼容最优化,其次考虑到算法的性能最优化,故所有的后端交易相关应用都采用C++进行编程;选用C#主要原因是为了降低策略开发者的编写难度,毕竟策略开发人员的编程水平没有那么高,并且可快速开发一些可视化回测分析程序;而NodeJS是为了方便开发Web端界面,并且提供一些REST API接口供前端应用调用。最后选用MySql也是为了方便部署,方便使用,并且它的内存数据库还是性能相当不错的,如替换其他数据也可以,如:SqlServer、Oracle、Mongodb等。由于系统采用分布式,为了降低开发难度,应用间数据通讯并非采用原生的tcp/ip协议进行编码,而采用ZeroMQ进行编程,通过几种常用模式,如:REQ/REP、PULL/PUSH、PUB/SUB等,就能轻松进行数据通讯。最后本项目开发工具采用VS2015和VSCode,读者可自行下载。以下所有的项目工程都将基于这两款IDE进行建立。
以上仅仅是编程方面的准备工作,但如果想做好一套量化系统,你必须对业务知识有深刻的了解,不然后面的一些细节你可能无法把控,甚至会引发一些意想不到的灾难。不积跬步,无以至千里;不积小流,无以成江海。让我们一步一个脚印,先把基础打扎实,再正式开始我们的量化系统搭建之行。在此推荐《c++ primer plus》、《C#高级编程》、《代码之美》,交易相关的大家可以参加协会组织的从业人员资格考试,这样能系统的学习基础知识、法律知识等。相信充分做好这些准备后,下文的量化系统搭建会非常轻松、非常有趣。

架构设计
系统架构

本量化系统分为前端和后端,前端主要面向用户,用于策略编写、手工下单、监控、报告分析等;后端将交易和行情进行封装,以及指令路由工作,并提供最简单的接口供前端使用。

image.png
以下是行情中心内部架构,考虑到后期接入多家交易所行情,所以将行情接收器独立出来,这样能更好的做到负载均衡,并各自将行情写入内存数据库,供其他应用调用;而行情中心将收集各接收器推送来的行情,封装成统一格式再发布给订阅者。

image.png

以下是交易中心与算法工人内部架构,交易中心主要负责接收客户端发送过来的指令,通过风控层后将指令路由至算法工人,由算法工人处理订单逻辑,如:条件单、追单、止损止盈单等,并最终将订单报入交易所场内,同时将回报返回给交易中心,再由交易中心将回报返回给订阅用户。
交易中心还负责路由用户发送的策略指令,并根据指令分发给策略回测工人或者策略仿真工人,对应的去执行回测指令或者启动策略等。

相关文章
|
4天前
|
数据管理 API 调度
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
HarmonyOS Next 是华为新一代操作系统,专注于分布式技术的深度应用与生态融合。本文通过技术特点、应用场景及实战案例,全面解析其核心技术架构与开发流程。重点介绍分布式软总线2.0、数据管理、任务调度等升级特性,并提供基于 ArkTS 的原生开发支持。通过开发跨设备协同音乐播放应用,展示分布式能力的实际应用,涵盖项目配置、主界面设计、分布式服务实现及部署调试步骤。此外,深入分析分布式数据同步原理、任务调度优化及常见问题解决方案,帮助开发者掌握 HarmonyOS Next 的核心技术和实战技巧。
121 76
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
|
7天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
31 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
4天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
34 11
|
6天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
29 11
|
3天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
6天前
|
前端开发 搜索推荐 安全
陪玩系统架构设计陪玩系统前后端开发,陪玩前端设计是如何让人眼前一亮的?
陪玩系统的架构设计、前后端开发及前端设计是构建吸引用户、功能完善的平台关键。架构需考虑用户需求、技术选型、安全性等,确保稳定性和扩展性。前端可选用React、Vue或Uniapp,后端用Spring Boot或Django,数据库结合MySQL和MongoDB。功能涵盖用户管理、陪玩者管理、订单处理、智能匹配与通讯。安全性方面采用SSL加密和定期漏洞扫描。前端设计注重美观、易用及个性化推荐,提升用户体验和平台粘性。
32 0
|
6天前
|
监控 Java 数据中心
微服务架构系统稳定性的神器-Hystrix
Hystrix是由Netflix开源的库,主要用于微服务架构中的熔断器模式,防止服务调用失败引发级联故障。它通过监控服务调用的成功和失败率,在失败率达到阈值时触发熔断,阻止后续调用,保护系统稳定。Hystrix具备熔断器、资源隔离、降级机制和实时监控等功能,提升系统的容错性和稳定性。然而,Hystrix也存在性能开销、配置复杂等局限,并已于2018年进入维护模式。
15 0
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
22天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
65 5
|
25天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
55 8