Spark 体系架构

简介:

最近看到一篇关于Spark架构的博文,作者是 Alexey Grishchenko。看过Alexey博文的同学应该都知道,他对Spark理解地非常深入,读完他的 “spark-architecture” 这篇博文,有种醍醐灌顶的感觉,从JVM内存分配到Spark集群的资源管理,步步深入,感触颇多。因此,在周末的业余时间里,将此文的核心内容译成中文,并在这里与大家分享。如在翻译过程中有文字上的表达纰漏,还请大家指出。

首先来看一张Spark 1.3.0 官方给出的图片,如下:

image

在这张图中,你会看到很多的术语 ,诸如“executor”, “task”, “cache”, “Worker Node” 等。原作者表示,在他开始学spark的时候,上述图是唯一一张可以找到的图片(Spark 1.3.0),形势很不乐观。更加不幸地是,这张图并没有很好地表达出Spark内在的一些概念。因此,通过不断地学习,作者将自己所学的知识整理成一个系列,而此文仅是其中的一篇。下面进入核心要点。

Spark 内存分配

在你的cluster或是local machine上正常运行的任何Spark程序都是一个JVM进程。对于任何的JVM进程,你都可以使用-Xmx和-Xms配置它的堆大小(heap size)。问题是:这些进程是如何使用它的堆内存(heap memory)以及为何需要它呢?下面围绕这个问题慢慢展开。

首先来看看下面这张Spark JVM堆内存分配图:
image

Heap Size

默认情况下,Spark启动时会初始化512M的JVM 堆内存。处于安全角度以及避免OOM错误,Spark只允许使用90%的的堆内存,该参数可以通过Spark的spark.storage.safetyFraction参数进行控制。 OK,你可能听说Spark是基于内存的工具,它允许你将数据存在内存中。如果你读过作者的 Spark Misconceptions 这篇文章,那么你应该知道Spark其实不是真正的基于内存(in-memory)的工具。它仅仅是在LRU cache (http://en.wikipedia.org/wiki/Cache_algorithms) 过程中使用内存。所以一部分的内存用在数据缓存上,这部分通常占安全堆内存(90%)的60%,该参数也可以通过配置spark.storage.memoryFraction进行控制。因此,如果你想知道在Spark中可以缓存多少数据,你可以通过对所有executor的堆大小求和,然后乘以safetyFraction 和storage.memoryFraction即可,默认情况下是0.9 * 0.6 = 0.54,即总的堆内存的54%可供Spark使用。

Shuffle Memory

接下来谈谈shuffle memory,计算公式是 “Heap Size” spark.shuffle.safetyFraction spark.shuffle.memoryFraction。spark.shuffle.safetyFraction的默认值是 0.8 或80%, spark.shuffle.memoryFraction的默认值是0.2或20%,所以你最后可以用于shuffle的JVM heap 内存大小是 0.8*0.2=0.16,即总heap size的16%。 问题是Spark是如何来使用这部分内存呢?官方的Github上面有更详细的解释(https://github.com/apache/spark/blob/branch-1.3/core/src/main/scala/org/apache/spark/shuffle/ShuffleMemoryManager.scala)。总得来说,Spark将这部分memory 用于Shuffle阶段调用其他的具体task。当shuffle执行之后,有时你需要对数据进行sort。在sort阶段,通常你还需要一个类似缓冲的buffer来存储已经排序好的数据(谨记,不能修改已经LRU cache中的数据,因为这些数据可能会再次使用)。因此,需要一定数量的RAM来存储已经sorted的数据块。如果你没有足够的memory用来排序,该怎么做呢?在wikipedia 搜一下“external sorting” (外排序),仔细研读一下即可。外排序允许你对块对数据块进行分类,然后将最后的结果合并到一起。

unroll Memory

关于RAM最后要讲到”unroll” memory,用于unroll 进程的内存总量计算公式为:spark.storage.unrollFraction spark.storage.memoryFraction spark.storage.safetyFraction。默认情况下是 0.2 0.6 0.9 = 0.108,
即10.8%的heap size。 当你需要在内存中将数据块展开的时候使用它。为什么需要 unroll 操作呢?在Spark中,允许以 序列化(serialized )和反序列化(deserialized) 两种方式存储数据,而对于序列化后的数据是无法直接使用的,所以在使用时必须对其进行unroll操作,因此这部分RAM是用于unrolling操作的内存。unroll memory 与storage RAM 是共享的,也就是当你在对数据执行unroll操作时,如果需要内存,而这个时候内存却不够,那么可能会致使撤销存储在 Spark LRU cache中少些数据块。

Spark 集群模式JVM分配

OK,通过上面的讲解,我们应该对Spark进程有了进一步的理解,并且已经知道它是如何利用JVM进程中的内存。现在切换到集群上,以YARN模式为例。

image

在YARN集群里,它有一个YARN ResourceMananger 守护进程控制着集群资源(也就是memory),还有一系列运行在集群各个节点的YARN Node Managers控制着节点资源的使用。从YARN的角度来看,每个节点可以看做是可分配的RAM池,当你向ResourceManager发送request请求资源时,它会返回一些NodeManager信息,这些NodeManager将会为你提供execution container,而每个execution container 都是一个你发送请求时指定的heap size的JVM进程。JVM的位置是由 YARN ResourceMananger 管理的,你没有控制权限。如果某个节点有64GB的RAM被YARN控制着(可通过设置yarn-site.xml 配置文件中参数 yarn.nodemanager.resource.memory-mb ),当你请求10个4G内存的executors时,这些executors可能运行在同一个节点上,即便你的集群跟大也无济于事。

当以YARN模式启动spark集群时,你可以指定executors的数量(-num-executors 或者 spark.executor.instances 参数),可以指定每个executor 固有的内存大小(-executor-memory 或者 spark.executor.memory),可以指定每个executor使用的cpu核数(-executor-cores 或者 spark.executor.cores),可以指定分配给每个task的core的数量(spark.task.cpus),还可以指定 driver 上使用的内存(-driver-memory 或者 spark.driver.memory)。

当你在集群上执行应用程序时,job程序会被切分成多个stages,每个stage又会被切分成多个task,每个task单独调度,可以把每个executor的JVM进程看做是task执行槽池,每个executor 会给你的task设置 spark.executor.cores/ spark.task.cpus execution个执行槽。例如,在集群的YARN NodeManager中运行有12个节点,每个节点有64G内存和32个CPU核(16个超线程物理core)。每个节点可以启动2个26G内存的executor(剩下的RAM用于系统程序、YARN NM 和DataNode),每个executor有12个cpu核可以用于执行task(剩下的用于系统程序、YARN NM 和DataNode),这样整个集群可以处理 12 machines 2 executors per machine 12 cores per executor / 1 core = 288 个task 执行槽,这意味着你的spark集群可以同时跑288个task,几乎充分利用了所有的资源。整个集群用于缓存数据的内存有0.9 spark.storage.safetyFraction 0.6 spark.storage.memoryFraction 12 machines 2 executors per machine 26 GB per executor = 336.96 GB. 实际上没有那么多,但在大多数情况下,已经足够了。

到这里,大概已经了解了spark是如何使用JVM的内存,并且知道什么是集群的执行槽。而关于task,它是Spark执行的工作单元,并且作为exector JVM 进程中的一个thread执行。这也是为什么Spark job启动时间快的原因,在JVM中启动一个线程比启动一个单独的JVM进程块,而在Hadoop中执行MapReduce应用会启动多个JVM进程。

Spark Partition

下面来谈谈Spark的另一个抽象概念”partition”。在Spark程序运行过程中,所有的数据都会被切分成多个Partion。问题是一个parition是什么并且如何决定partition的数量呢?首先Partition的大小完全依赖于你的数据源。在Spark中,大部分用于读取数据的method都可以指定生成的RDD中Partition数量。当你从hdfs上读取一个文件时,你会使用Hadoop的InputFormat来指定,默认情况下InputFormat返回每个InputSplit都会映射到RDD中的一个Partition上。对于HDFS上的大部分文件,每个数据块都会生成一个InputSplit,大小近似为64 MB/128 MB的数据。近似情况下,HDFS上数据的块边界是按字节来算的(64MB一个块),但是当数据被处理时,它会按记录进行切分。对于文本文件来说切分的字符就是换行符,对于sequence文件,它以块结束等等。比较特殊的是压缩文件,由于整个文件被压缩了,因此不能按行进行切分了,整个文件只有一个inputsplit,这样spark中也会只有一个parition,在处理的时候需要手动对它进行repatition。

本文是对 Alexey Grishchenko 的 Distributed Systems Architecture 系列的第一篇文章核心要点的翻译,原作者的第二篇文章是关于shuffle的,【原文链接】,第三篇文章是关于memory 管理模式的,【原文链接】,极力推荐。

文章转载自 开源中国社区[http://www.oschina.net]

相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
206 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
91 2
|
2月前
|
分布式计算 大数据 Apache
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
110 3
|
3月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
66 0
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
55 0
|
3月前
|
SQL 存储 分布式计算
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
55 0
|
8月前
|
分布式计算 资源调度 Spark
Spark的一些问题汇总 及 Yarn与Spark架构的对比
Spark的一些问题汇总 及 Yarn与Spark架构的对比
93 0
|
1月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
50 3
|
2月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####

热门文章

最新文章