Serverless扫描技术研究及应用

简介: Serverless扫描技术研究及应用

Serverless扫描技术研究及应用

本篇文章参考风起大佬的博客,主要针对Serverless(云函数)扫描技术的进一步研究

本文所用到的源码

https://github.com/wikiZ/ServerlessScan

上篇文章谈到 云函数的代理IP利用面 简单的介绍了下云函数的部署 以及本地代理工具的结合以实现扫描的简单防溯源,但是上篇文章存在俩个弊端

  • 由于 单个用户在某个地域只能有5个随机出口IP,也就是说如果这五个IP均被封禁了那么我们的扫描就无法继续进行了
  • 同时在扫描的过程中,我们查看Apache access.log日志发现 header头中的U-A头存在了很明显的特征

首先解决第一个问题

单个用户在某个地域只能有5个随机出口IP

单个用户在某一地域只能有五个出口IP,那么我们就建立多个地域即可

和前面一样首先建立云函数

云函数代码为以下,无论是云函数还是域前置或者反向代理等手段,本质都是流量转发,所以我们在云函数上编写的核心代码就是实现了单次扫描返回信息的功能,剩下的控制代码则由我们本地编写的代码执行。

这里以风起大佬的源码为基础

# -*- coding: utf8 -*-
import requests

def main_handler(event, context):
   headers=event["headers"]
   url=event["queryString"]["url"]
   path = event["queryString"]["path"]
   crake_url=str(url+path)
   try:
       r = requests.get(crake_url,timeout=5,headers=headers,verify=False)
       status = r.status_code
   except Exception:
       status = None
       pass

   return status,crake_url

配置好云函数代码后,继续进入 触发管理 选项

触发器配置如图所示,注意取消勾选集成响应。

编辑API配置中,将路径设置为 / ,然后点击 立即完成

然后得到了两个API网关的公网域名,这时我们就已经完成了基本配置。可以通过这两个公网域名实现对我们上面编写的云函数功能的触发实现。

然后重复上面的操作,创建一个一模一样的云函数,API网关也为相同配置,但是需要注意的是选择的地域要为不同的地方,因为 单个用户在某个地域只能有5个随机出口IP

将两个不同地域的云函数的API网关域名地址 添加到代理工具 或者是扫描器配置文件中即可

这样就能完美绕过只有五个IP均被封禁的情况

例如

扫描后查看日志 IP随机地域

在更大流量的扫描下,我们还可以通过分批次的方式进行扫描,如果是端口扫描,我们就可以创建多个云函数且为不同地域分工扫描不同端口,在态势感知来看就是这n*5个IP地址在进行扫描,也就解决了单个地域只能有5个IP的窘境。

同样进一步思考,我们也可以在相同的云函数下创建多个地域的云函数,再创建其他厂商的云函数,实现了IP地址的多元化,在这个基础上再创建不同地域,理论上可以这样一直叠加,实现单兵大流量扫描。

对于大集团目标,通常每天态势感知都会有很大的扫描流量,那么在这种情况下,如果给我们的云函数扫描再加上一定程度的随机延时扫描,那么在态势列表中看到的就是一堆不连续的单次请求,如果是目录扫描则会直接认为是正常的请求,因为IP的随机性以及请求包的合法性、不连续性根本无法联想这是一次扫描事件,更不要谈溯源的问题了,根本无法还原攻击链,这样的攻击只会比C2隐匿反弹更难缠。

扫描器ua头存在明显特征问题

创建一个 get_ua-header.py文件,其中创建了一个UA数组,存放了大量不同的User-Agent。

这里导入我们刚才创建的UA数组,然后在第二个箭头所指处设置header的User-Agent每次都随机获取UA数组中的值,再在发送请求中指定header,当然这里仅为了演示,如果真实场景下,可以将header头自定义设置更多选项让它看起来更像是一个合法的请求

这里云函数中获取到了我们本地请求API网关域名的headers然后在转发时将它的header替换为我们本地请求包中的header从而实现了自定义header的效果。

发现在Apache日志中,User-Agent已经为我们本地请求的随机信息,那么通过继续自定义本地控制代码中的header信息让他看起来更加合理,就可以实现更加隐匿的扫描啦。

关于Serverless扫描技术的知识点就总结到这里,本文可能实际上没有啥技术含量,但是写起来还是比较耗费时间的,在这个喧嚣浮躁的时代,个人博客越来越没有人看了,写博客感觉一直是用爱发电的状态。如果你恰巧财力雄厚,感觉本文对你有所帮助的话,可以考虑打赏一下本文!
相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
3月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
553 30
|
4月前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
554 12
|
9月前
|
SQL 分布式计算 Serverless
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
1048 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
|
9月前
|
人工智能 开发框架 安全
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
800 30
|
7月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
396 0
|
4月前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。
|
4月前
|
人工智能 Kubernetes 安全
重塑云上 AI 应用“运行时”,函数计算进化之路
回顾历史,电网的修建,深刻地改变了世界的经济地理和创新格局。今天,一个 AI 原生的云端运行时的进化,其意义也远不止于技术本身。这是一次设计哲学的升华:从“让应用适应平台”到“让平台主动理解和适应智能应用”的转变。当一个强大、易用、经济且安全的 AI 运行时成为像水电一样的基础设施时,它将极大地降低创新的门槛。一个独立的开发者、一个小型创业团队,将有能力去创造和部署世界级的 AI 应用。这才是技术平权的真谛,是激发全社会创新潜能的关键。
|
8月前
|
人工智能 Serverless API
MCP Server 之旅第 4 站: 长连接闲置计费最高降低87%成本的技术内幕
阿里云函数计算(FC)提供事件驱动的全托管计算服务,支持 MCP Server 场景优化。通过 [MCP Runtime](https://mp.weixin.qq.com/s/_DSMRovpr12kkiQUYDtAPA),实现 Stdio MCP Server 一键托管,并借助亲和性调度解决 Session 保持问题。针对 MCP Server 的稀疏调用特性,函数计算引入长连接闲置计费机制,在毫秒级计费基础上,显著降低资源闲置成本(最高可达87%)。用户可通过控制台或 API 开启该功能,Websocket 长请求场景亦默认支持。此方案有效提升资源利用率,为用户提供灵活、经济的计算服务。
|
9月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
515 12
|
9月前
|
人工智能 开发框架 运维
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
Serverless MCP 运行时业界首发,函数计算支持阿里云百炼 MCP 服务!阿里云百炼发布业界首个全生命周期 MCP 服务,无需用户管理资源、开发部署、工程运维等工作,5 分钟即可快速搭建一个连接 MCP 服务的 Agent(智能体)。作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力。
 Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速

相关产品

  • 函数计算