运筹帷幄决胜千里,Python3.10原生协程asyncio工业级真实协程异步消费任务调度实践

简介: 我们一直都相信这样一种说法:协程是比多线程更高效的一种并发工作方式,它完全由程序本身所控制,也就是在用户态执行,协程避免了像线程切换那样产生的上下文切换,在性能方面得到了很大的提升。毫无疑问,这是颠扑不破的业界共识,是放之四海而皆准的真理。

我们一直都相信这样一种说法:协程是比多线程更高效的一种并发工作方式,它完全由程序本身所控制,也就是在用户态执行,协程避免了像线程切换那样产生的上下文切换,在性能方面得到了很大的提升。毫无疑问,这是颠扑不破的业界共识,是放之四海而皆准的真理。

但事实上,协程远比大多数人想象中的复杂,正因为协程的“用户态”特性,任务调度权掌握在撰写协程任务的人手里,而仅仅依赖async和await关键字远远达不到“调度”的级别,有时候反而会拖累任务效率,使其在任务执行效率上还不及“系统态”的多线程和多进程,本次我们来探讨一下Python3原生协程任务的调度管理。

Python3.10协程库async.io的基本操作

事件循环(Eventloop)是 原生协程库asyncio 的核心,可以理解为总指挥。Eventloop实例提供了注册、取消和执行任务和回调的方法。

Eventloop可以将一些异步方法绑定到事件循环上,事件循环会循环执行这些方法,但是和多线程一样,同时只能执行一个方法,因为协程也是单线程执行。当执行到某个方法时,如果它遇到了阻塞,事件循环会暂停它的执行去执行其他的方法,与此同时为这个方法注册一个回调事件,当某个方法从阻塞中恢复,下次轮询到它的时候将会继续执行,亦或者,当没有轮询到它,它提前从阻塞中恢复,也可以通过回调事件进行切换,如此往复,这就是事件循环的简单逻辑。

而上面最核心的动作就是切换别的方法,怎么切换?用await关键字:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
  
async def job2():  
    print('job2开始')  
  
  
async def main():  
    await job1()  
    await job2()  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job1开始  
job1结束  
job2开始

是的,切则切了,可切的对吗?事实上这两个协程任务并没有达成“协作”,因为它们是同步执行的,所以并不是在方法内await了,就可以达成协程的工作方式,我们需要并发启动这两个协程任务:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
  
async def job2():  
    print('job2开始')  
  
  
async def main():  
    #await job1()  
    #await job2()  
    await asyncio.gather(job1(), job2())  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job1开始  
job2开始  
job1结束

如果没有asyncio.gather的参与,协程方法就是普通的同步方法,就算用async声明了异步也无济于事。而asyncio.gather的基础功能就是将协程任务并发执行,从而达成“协作”。

但事实上,Python3.10也支持“同步写法”的协程方法:

async def create_task():  
    task1 = asyncio.create_task(job1())  
    task2 = asyncio.create_task(job2())  
    await task1  
    await task2

这里我们通过asyncio.create\_task对job1和job2进行封装,返回的对象再通过await进行调用,由此两个单独的异步方法就都被绑定到同一个Eventloop了,这样虽然写法上同步,但其实是异步执行:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
  
async def job2():  
    print('job2开始')  
  
  
async def create_task():  
    task1 = asyncio.create_task(job1())  
    task2 = asyncio.create_task(job2())  
    await task1  
    await task2  
  
  
async def main():  
    #await job1()  
    #await job2()  
    await asyncio.gather(job1(), job2())  
  
  
if __name__ == '__main__':  
    asyncio.run(create_task())

系统返回:

job1开始  
job2开始  
job1结束

协程任务的上下游监控

解决了并发执行的问题,现在假设每个异步任务都会返回一个操作结果:

async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"

通过asyncio.gather方法,我们可以收集到任务执行结果:

async def main():  
  
    res = await asyncio.gather(job1(), job2())  
    print(res)

并发执行任务:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
  
async def main():  
  
    res = await asyncio.gather(job1(), job2())  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job1开始  
job2开始  
job1结束  
['job1', 'job2']

但任务结果仅仅也就是方法的返回值,除此之外,并没有其他有价值的信息,对协程任务的执行明细讳莫如深。

现在我们换成asyncio.wait方法:

async def main():  
  
    res = await asyncio.wait([job1(), job2()])  
    print(res)

依然并发执行:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
  
async def main():  
  
    res = await asyncio.wait([job1(), job2()])  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job1开始  
job2开始  
job1结束  
({<Task finished name='Task-2' coro=<job1() done, defined at /Users/liuyue/Downloads/upload/test/test_async.py:4> result='job1任务结果'>, <Task finished name='Task-3' coro=<job2() done, defined at /Users/liuyue/Downloads/upload/test/test_async.py:12> result='job2任务结果'>}, set())

可以看出,asyncio.wait返回的是任务对象,里面存储了大部分的任务信息,包括执行状态。

在默认情况下,asyncio.wait会等待全部任务完成 (return\_when='ALL\_COMPLETED'),它还支持 return\_when='FIRST\_COMPLETED'(第一个协程完成就返回)和 return\_when='FIRST\_EXCEPTION'(出现第一个异常就返回)。

这就非常令人兴奋了,因为如果异步消费任务是发短信之类的需要统计达到率的任务,利用asyncio.wait特性,我们就可以第一时间记录任务完成或者异常的具体时间。

协程任务守护

假设由于某种原因,我们手动终止任务消费:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
  
async def main():  
    task1 = asyncio.create_task(job1())  
    task2 = asyncio.create_task(job2())  
    task1.cancel()  
    res = await asyncio.gather(task1, task2)  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统报错:

File "/Users/liuyue/Downloads/upload/test/test_async.py", line 23, in main  
    res = await asyncio.gather(task1, task2)  
asyncio.exceptions.CancelledError  
  

这里job1被手动取消,但会影响job2的执行,这违背了协程“互相提携”的特性。

事实上,asyncio.gather方法可以捕获协程任务的异常:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
  
async def main():  
    task1 = asyncio.create_task(job1())  
    task2 = asyncio.create_task(job2())  
    task1.cancel()  
    res = await asyncio.gather(task1, task2,return_exceptions=True)  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job2开始  
[CancelledError(''), 'job2任务结果']

可以看到job1没有被执行,并且异常替代了任务结果作为返回值。

但如果协程任务启动之后,需要保证任务情况下都不会被取消,此时可以使用asyncio.shield方法守护协程任务:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
  
async def main():  
    task1 = asyncio.shield(job1())  
    task2 = asyncio.create_task(job2())  
      
    res = await asyncio.gather(task1, task2,return_exceptions=True)  
  
    task1.cancel()  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job1开始  
job2开始  
job1结束  
['job1任务结果', 'job2任务结果']

协程任务回调

假设协程任务执行完毕之后,需要立刻进行回调操作,比如将任务结果推送到其他接口服务上:

import asyncio  
  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
def callback(future):  
    print(f'回调任务: {future.result()}')  
  
  
  
async def main():  
    task1 = asyncio.shield(job1())  
    task2 = asyncio.create_task(job2())  
  
    task1.add_done_callback(callback)  
      
    res = await asyncio.gather(task1, task2,return_exceptions=True)  
  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

这里我们通过add\_done\_callback方法对job1指定了callback方法,当任务执行完以后,callback会被调用,系统返回:

job1开始  
job2开始  
job1结束  
回调任务: job1任务结果  
['job1任务结果', 'job2任务结果']

与此同时,add\_done\_callback方法不仅可以获取协程任务返回值,它自己也支持参数参数传递:

import asyncio  
from functools import partial  
  
async def job1():  
    print('job1开始')  
    await asyncio.sleep(1)  
    print('job1结束')  
  
    return "job1任务结果"  
  
  
async def job2():  
    print('job2开始')  
  
    return "job2任务结果"  
  
  
def callback(future,num):  
    print(f"回调参数{num}")  
    print(f'回调任务: {future.result()}')  
  
  
  
async def main():  
    task1 = asyncio.shield(job1())  
    task2 = asyncio.create_task(job2())  
  
    task1.add_done_callback(partial(callback,num=1))  
      
    res = await asyncio.gather(task1, task2,return_exceptions=True)  
  
    print(res)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

系统返回:

job1开始  
job2开始  
job1结束  
回调参数1  
回调任务: job1任务结果  
['job1任务结果', 'job2任务结果']

结语

成也用户态,败也用户态。所谓水能载舟亦能覆舟,协程消费任务的调度远比多线程的系统级调度要复杂,稍不留神就会造成业务上的“同步”阻塞,弄巧成拙,适得其反。这也解释了为什么相似场景中多线程的出场率要远远高于协程,就是因为多线程不需要考虑启动后的“切换”问题,无为而为,简单粗暴。

相关文章
|
12天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
32 2
|
16天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
12天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
48 4
|
12天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
24 2
|
23天前
|
调度 开发者 Python
异步编程在Python中的应用:Asyncio和Coroutines
异步编程在Python中的应用:Asyncio和Coroutines
19 1
|
25天前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
30天前
|
调度 Python
python知识点100篇系列(20)-python协程与异步编程asyncio
【10月更文挑战第8天】协程(Coroutine)是一种用户态内的上下文切换技术,通过单线程实现代码块间的切换执行。Python中实现协程的方法包括yield、asyncio模块及async/await关键字。其中,async/await结合asyncio模块可更便捷地编写和管理协程,支持异步IO操作,提高程序并发性能。协程函数、协程对象、Task对象等是其核心概念。
|
20天前
|
NoSQL 关系型数据库 MySQL
python协程+异步总结!
本文介绍了Python中的协程、asyncio模块以及异步编程的相关知识。首先解释了协程的概念和实现方法,包括greenlet、yield关键字、asyncio装饰器和async/await关键字。接着详细讲解了协程的意义和应用场景,如提高IO密集型任务的性能。文章还介绍了事件循环、Task对象、Future对象等核心概念,并提供了多个实战案例,包括异步Redis、MySQL操作、FastAPI框架和异步爬虫。最后提到了uvloop作为asyncio的高性能替代方案。通过这些内容,读者可以全面了解和掌握Python中的异步编程技术。
37 0
|
20天前
|
数据采集 缓存 程序员
python协程使用教程
1. **协程**:介绍了协程的概念、与子程序的区别、优缺点,以及如何在 Python 中使用协程。 2. **同步与异步**:解释了同步与异步的概念,通过示例代码展示了同步和异步处理的区别和应用场景。 3. **asyncio 模块**:详细介绍了 asyncio 模块的概述、基本使用、多任务处理、Task 概念及用法、协程嵌套与返回值等。 4. **aiohttp 与 aiofiles**:讲解了 aiohttp 模块的安装与使用,包括客户端和服务器端的简单实例、URL 参数传递、响应内容读取、自定义请求等。同时介绍了 aiofiles 模块的安装与使用,包括文件读写和异步迭代
22 0
|
安全 Unix Shell
Python 异步: 在非阻塞子进程中运行命令(19)
Python 异步: 在非阻塞子进程中运行命令(19)
902 0