数据结构139-二叉搜索树-中序遍历代码

简介: 数据结构139-二叉搜索树-中序遍历代码
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>封装二叉搜索树</title>
</head>
<body>
    <script>
        function BinarySearchTree(){
            function Node(key){
                this.key=null
                this.left=null
                this.right-null
            }
            this.root=null
            BinarySearchTree.prototype.insert=function(key){
                var newNode=new Node(key)
                //判断节点是否有值
                if(this.root==null){
                    this.root=newNode
                }else{
                    this.insertNode(this.root,newNode)
                }
            }
            BinarySearchTree.prototype.insertNode=function(node,newNode){
                if(newNode.key<node.key){
                    if(node.left==null){
                        node.left=newNode
                    }else{
                        this.insertNode(node.left,newNode)
                    }
                }else{
                    if(node.right==null){
                        node.right=newNode
                    }else{
                        this.insertNode(node.right,newNode)
                    }
                }
            }
            //先序遍历
            BinarySearchTree.prototype.preOrderTraversal=function(handler){
                this.preOrderTraversalNode(this.root,handler)
            }
            BinarySearchTree.prototype.preOrderTraversalNode=function(node,handler){
                if(node!=null){
                    //处理经过的节点
                    handler(node.key)
                    this.preOrderTraversalNode(node.left,handler)
                    this.preOrderTraversalNode(node.right,handler)
                }
            }
             //中序遍历
             BinarySearchTree.prototype.middleOrderTraversal=function(handler){
                this.middleOrderTraversalNode(this.root,handler)
            }
            BinarySearchTree.prototype.middleOrderTraversalNode=function(node,handler){
                if(node!=null){
                    //处理经过的节点
                    handler(node.key)
                    this.preOrderTraversalNode(node.left,handler)
                    this.preOrderTraversalNode(node.right,handler)
                }
            }
        }
    </script>
</body>
</html>
相关文章
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
244 1
|
8月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
328 22
|
8月前
|
C语言 C++ 容器
【数据结构】二叉搜索树(二叉排序树)
本文介绍了二叉搜索树(Binary Search Tree, BST)的定义、实现及其性能分析。二叉搜索树是一种特殊的二叉树,其特点是左子树所有节点值小于根节点值,右子树所有节点值大于根节点值,且每个子树也满足此特性。文中详细讲解了BST的节点结构、插入、查找、删除等操作的实现,并通过C++代码展示了这些功能。此外,还讨论了BST的性能:在理想情况下,时间复杂度接近O(logN),但在最坏情况下可能退化为O(N)。为了提高效率,后续将学习自平衡二叉搜索树如AVL树和红黑树。掌握BST有助于理解STL中的set和map容器。感谢阅读,欢迎点赞支持。
709 9
|
10月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
435 3
|
12月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
412 1
|
10月前
|
数据采集 存储 算法
【C++数据结构——图】图的遍历(头歌教学实验平台习题) 【合集】
本文介绍了图的遍历算法,包括深度优先遍历(DFS)和广度优先遍历(BFS)。深度优先遍历通过递归方式从起始节点深入探索图,适用于寻找路径、拓扑排序等场景;广度优先遍历则按层次逐层访问节点,适合无权图最短路径和网络爬虫等应用。文中提供了C++代码示例,演示了如何实现这两种遍历方法,并附有测试用例及结果,帮助读者理解和实践图的遍历算法。
499 0
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
144 1
|
存储 算法 索引
HashMap底层数据结构及其增put删remove查get方法的代码实现原理
HashMap 是基于数组 + 链表 + 红黑树实现的高效键值对存储结构。默认初始容量为16,负载因子为0.75。当存储元素超过容量 * 负载因子时,会进行扩容。HashMap 使用哈希算法计算键的索引位置,通过链表或红黑树解决哈希冲突,确保高效存取。插入、获取和删除操作的时间复杂度接近 O(1)。
298 0
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
287 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
117 0
栈区的非法访问导致的死循环(x64)

热门文章

最新文章

下一篇
oss云网关配置