前端知识学习案例5-express实现restful Api-更新文章

简介: 前端知识学习案例5-express实现restful Api-更新文章

image.png

相关文章
|
16天前
|
JSON JavaScript 前端开发
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发作为连接用户与数据的桥梁,扮演着至关重要的角色。本文将引导您步入Node.js的奇妙世界,通过实践操作,掌握如何使用这一强大的JavaScript运行时环境构建高效、可扩展的RESTful API。我们将一同探索Express框架的使用,学习如何设计API端点,处理数据请求,并实现身份验证机制,最终部署我们的成果到云服务器上。无论您是初学者还是有一定基础的开发者,这篇文章都将为您打开一扇通往后端开发深层知识的大门。
32 12
|
19天前
|
XML JSON 缓存
深入理解RESTful API设计原则与实践
在现代软件开发中,构建高效、可扩展的应用程序接口(API)是至关重要的。本文旨在探讨RESTful API的核心设计理念,包括其基于HTTP协议的特性,以及如何在实际应用中遵循这些原则来优化API设计。我们将通过具体示例和最佳实践,展示如何创建易于理解、维护且性能优良的RESTful服务,从而提升前后端分离架构下的开发效率和用户体验。
|
20天前
|
JSON 缓存 测试技术
构建高效RESTful API的后端实践指南####
本文将深入探讨如何设计并实现一个高效、可扩展且易于维护的RESTful API。不同于传统的摘要概述,本节将直接以行动指南的形式,列出构建RESTful API时必须遵循的核心原则与最佳实践,旨在为开发者提供一套直接可行的实施框架,快速提升API设计与开发能力。 ####
|
20天前
|
JSON API 开发者
深入理解RESTful API设计原则
在数字化时代,API已成为连接不同软件应用的桥梁。本文旨在探讨RESTful API设计的基本原则和最佳实践,帮助开发者构建高效、可扩展的网络服务接口。通过解析REST架构风格的核心概念,我们将了解如何设计易于理解和使用的API,同时保证其性能和安全性。
|
20天前
|
存储 缓存 API
深入理解RESTful API设计原则
在现代软件开发中,RESTful API已成为前后端分离架构下不可或缺的通信桥梁。本文旨在探讨RESTful API的核心设计原则,包括资源导向、无状态、统一接口、以及可缓存性等,并通过实例解析如何在实际应用中遵循这些原则来构建高效、可维护的API接口。我们将深入分析每个原则背后的设计理念,提供最佳实践指导,帮助开发者优化API设计,提升系统整体性能和用户体验。
17 0
|
2月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
174 2
|
2月前
|
JavaScript 前端开发 程序员
前端学习笔记——node.js
前端学习笔记——node.js
46 0
|
2月前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
2月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
2月前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
120 1