5个python中编程的大坑

简介: 5个python中编程的大坑

对于Python新手来说,写代码很少考虑代码的效率和简洁性,因此容易造成代码冗长、执行慢,这些都是需要改进的地方。本文是想通过几个案列给新手一点启发,怎样写python代码更优雅。

大坑一:不喜欢使用高级数据结构

1.sets(集合)

很多新手忽视sets(集合)和tuple(元组)的强大之处

例如,取两个列表交集:

def common_elements(list1, list2):    
    common = []        
    for item1 in list1:                
        if item1 in list2:                        
            common.append( item1 )        、
    return common

这样写会更好:

def common_elements(list1, list2):
    common = set(list1).intersection(set(list2))
    return list(common)

2.dic(字典)

新手枚举(访问和取出)字典的键和对应值,认为对应值必须通过键来访问,往往会这样做:

my_dict = {'a':1,'b':2}
for key in my_dict:        
    print(key, my_dict[key])

有一个更优雅的方法可以实现:

my_dict = {'a':1,'b':2}
    for key, value in my_dict.items():    
    print(key, value)

对大部分项目来说,这样写会更加有效率。

3.tuple(元组)

元组一旦创建就无法更改元素,看似没有什么用处,其实元组的作用大着呢!很多函数方法都会返回元组,比如enumerate()和dict.items(),并且可以在函数中使用元组,返回多个值。还能够很方便地从元组中提取信息:

a,b = ('cat','dog')

上面元组中有两个元素,分别被赋给a,b。如果有多个值,同样可以提取:

a,b,c = ('cat','dog','tiger')
print(a,b,c)

提取首、尾两个元素:

first,*_,end = (1,2,3,4,5,6)
print(first,end)
# 输出:1、6

提取首、中、尾三部分:

first,*middle,end = (1,2,3,4,5,6)
print(first,middle,end)
# 输出:1、[2, 3, 4, 5]、6

元组还可以用来交换变量:

(a,b,c) = (c,a,b)

上面a变成之前的c,b变成之前的a,c变成之前的b

元组也能作为字典的键,所以如果你需要存储数据,可以使用带有元组键的字典,比如说经纬度数据。

大坑二:不喜欢使用上下文管理器

新手可能会习惯这样进行读取文件操作:

if os.path.exists(data_file_path):    
    data_file = open(data_file_path,'r')
else:    
    raise OSERROR
print( data_file.read())
data.close()

这样写会有几个明显的问题:

  • 可能出现文件存在,但文件被占用,无法读取的情况
  • 可能出现文件可以被读取,但操作文件对象出现报错的情况
  • 可能出现忘记关闭文件的情况

如果使用with...语句,问题就迎刃而解了:

with open(data_file_path,'r') as data_file:
    print(data_file.read)

这样可以捕获任何打开文件或处理数据时的异常情况,并且在任务处理完后自动关闭文件。

python初学者可能不太了解上下文管理器的神奇之处,它真的能带来巨大的便利。

大坑三:不喜欢使用标准库

标准库itertools和collections仍然很少被初学者使用

itertools

如果你看到下面的任务:

list1 = range(1,10)
list2 = range(10,20)
for item1 in list1:
    for item2 in list1:
        print(item1*item2)

这是一个嵌套循环操作,为提高代码效率,完全可以用product()函数替代嵌套循环:

from itertools import product
list1 = range(1,10)
list2 = range(10,20)
for item1,item2 in product(list1, list2):
    print(item1*item2)

这两段代码的结果完全一样,但使用标准库函数明显更加简洁高效。itertools还有很多方便操作迭代对象的函数,比如:

  • count()函数会创建一个无限迭代器
  • cycle()函数会把传入的序列无限重复下去
  • chain()可以把多个迭代对象串联起来
  • group()函数可以把迭代其中相邻的重复元素挑出来,放在一起
    ......

有兴趣可以详细看看itertools库的各种神奇函数

collections

新手对python集合模块了解的可能并不多,你可能会遇到这样的情形:

consolidated_list = [('a',1),('b',2),('c',3),('b',4)]
items_by_id = {}
for id_, item in consolidated_list:
    if id_ not in items_by_id: 
        items_by_id[id_] = []
    if id_ in items_by_id:
        items_by_id[id_].append(item)

上面代码构建了一个字典,依次向字典中添加信息,如果某个键已经存在,则以某种方式修改该键的值;如果某个键不存在,则添加对应键值对。

这种算法非常常见,你可以用collects模块的defaultdict()函数来实现同样效果:

from collections import defaultdict
 
items_by_id = defaultdict(list)
consolidated_list = [('a',1),('b',2),('c',3),('b',4)]

for id_, item in consolidated_list:
    items_by_id[id_].append(item)

在此列中,defaultdict()接受一个list作为参数,当键不存在时,则返回一个空列表作为对应值。

有时候我们会遇到统计词频的案例,比如:

# 统计词频
colors = ['red', 'blue', 'red', 'green', 'blue', 'blue']
result = {}
for color in colors:
    if result.get(color)==None:
        result[color]=1
    else:
        result[color]+=1
print (result)
# 输出 {'red': 2, 'blue': 3, 'green': 1}

完全可以用defaultdict()函数实现上面的计数功能:

colors = ['red', 'blue', 'red', 'green', 'blue', 'blue']
d = defaultdict(int)
for color in colors:
    d[color] += 1
print(d) #学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441

更简单的方法用collections模块的Counter()函数:

from collections import Counter
colors = ['red', 'blue', 'red', 'green', 'blue', 'blue']
c = Counter(colors)
print (dict(c))

对于备份文件,新人往往会用system模块:

from  os import system
system("xcopy e:\\sample.csv  e:\\newfile\\")

其实shutil模块更好用:

import shutil
shutil.copyfile('E:\\q.csv', 'e:\\movie\\q.csv')

因为shutil会很详细地报告错误和异常。

大坑四:不喜欢使用异常处理

无论老手新手都应该在写代码的时候进行异常处理操作,这样可以使代码更加健壮。异常处理一般会用try...except语句

大坑五:不喜欢使用生成器

除非你的list十分复杂,并且频繁调用,否则都建议使用生成器,因为它非常节省内存,举个例子:

def powers_of_two(max=20000):
    i = 0
    powers = []
    while 2**i < max:
        powers.append[2**i]
        i += 1
    return powers

对于使用次数少、占据大量内存、且容易生成的数据,可以用生成器替代列表存储:

from itertools import count, takewhile
def powers_of_two(max=20000):
    for index in takewhile(lambda i: 2**i < max, count(start=0)):
        yield 2**index
相关文章
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
8天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
8天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
2天前
|
存储 人工智能 数据挖掘
Python编程入门:打造你的第一个程序
本文旨在为初学者提供Python编程的初步指导,通过介绍Python语言的基础概念、开发环境的搭建以及一个简单的代码示例,帮助读者快速入门。文章将引导你理解编程思维,学会如何编写、运行和调试Python代码,从而开启编程之旅。
22 2
|
2天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
3天前
|
存储 Python
Python编程入门:理解基础语法与编写简单程序
本文旨在为初学者提供一个关于如何开始使用Python编程语言的指南。我们将从安装Python环境开始,逐步介绍变量、数据类型、控制结构、函数和模块等基本概念。通过实例演示和练习,读者将学会如何编写简单的Python程序,并了解如何解决常见的编程问题。文章最后将提供一些资源,以供进一步学习和实践。
11 1
|
10天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
6天前
|
存储 网络协议 IDE
从零起步学习Python编程
从零起步学习Python编程
|
9天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
10天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
下一篇
无影云桌面