Go 实现插入排序算法及优化

简介: 本文首先对插入排序进行简单地介绍,通过图片来演示插入排序的过程,然后使用 Go 语言实现插入排序的算法。为减少算法中交换次数的逻辑,对算法进行优化,将交换的逻辑变成把前面的数往后移,最后将待排序的数插入到合适的位置即可。除了这种优化方式,还有一种改造方式:普通的算法往左查找的方式是线性查找,由于元素是有序的,因此线性查找可以换成二分查找,但是经过二分找到待插入的位置之后,也得移动前面的元素,相比上面的优化方法,还多了 O(logn) 的查找时间复杂度,因此我认为没有必要改造成二分查找。

耐心和持久胜过激烈和狂热。

哈喽大家好,我是陈明勇,本文分享的内容是使用 Go 实现插入排序算法。如果本文对你有帮助,不妨点个赞,如果你是 Go 语言初学者,不妨点个关注,一起成长一起进步,如果本文有错误的地方,欢迎指出!

插入排序

插入排序是一种简单的排序算法,以数组为例,我们可以把数组看成是多个数组组成。插入排序的基本思想是往前面已排好序的数组中插入一个元素,组成一个新的数组,此数组依然有序。光看文字可能不理解,让我们看看图示:

插入排序.png

插入排序的时间复杂度为 O(N²)。

算法实现

import (
    "fmt"
)
func main() {
    nums := [4]int{4, 1, 3, 2}
    fmt.Println("原数组:", nums)
    fmt.Println("--------------------------------")
    InsertionSort(nums)
}
func InsertionSort(nums [4]int) {
    for i := 1; i < len(nums); i++ {
            for j := i; j > 0 && nums[j] < nums[j-1]; j-- {
                    nums[j], nums[j-1] = nums[j-1], nums[j]
            }
            fmt.Printf("第 %d 轮后:%v\n", i, nums)
    }
    fmt.Println("--------------------------------")
    fmt.Println("排序后的数组:", nums)
}
复制代码

执行结果:

原数组: [4 1 3 2]
--------------------------------
第 1 轮后:[1 4 3 2]
第 2 轮后:[1 3 4 2]
第 3 轮后:[1 2 3 4]
--------------------------------
排序后的数组: [1 2 3 4]
复制代码
  • 第一层循环的 i 变量,表示待排序的元素;
  • 第二层循环:
  • j 变量的初值为 i 的值,由 j 变量往前去寻找待插入的位置;
  • 循环条件为 j > 0 && nums[j] < nums[j - 1]
  • j > 0 → 寻找到左边界则结束寻找;
  • nums[j] < nums[j - 1] → 左边元素小于待排序的元素则结束寻找;
  • 循环体为元素交换逻辑,只要满足循环条件,则不断交换元素,直到交换到待插入的位置,才终止。

算法优化

上面的代码,是通过不断地交换元素,直到无法交换,才能将元素放置到待插入的位置,为了避免频繁交换元素而导致效率低,将交换的逻辑变成把前面的数往后移,最后再将待排序的元素插入到合适的位置即可。

import (
    "fmt"
)
func main() {
    nums := [4]int{4, 1, 3, 2}
    fmt.Println("原数组:", nums)
    fmt.Println("--------------------------------")
    InsertionSort(nums)
}
func InsertionSort(nums [4]int) {
    for i := 1; i < len(nums); i++ {
        t := nums[i]
        j := i
        for ; j > 0 && t < nums[j-1]; j-- {
            nums[j] = nums[j-1]
        }
        nums[j] = t
        fmt.Printf("第 %d 轮后:%v\n", i, nums)
    }
    fmt.Println("--------------------------------")
    fmt.Println("排序后的数组:", nums)
}
复制代码
  • 用变量 t 记录待排序的元素,用 j 变量往前查找,只要前面的数比 t 大,那么就往后移,最后将 t 插入到合适的位置。

小结

  • 本文首先对插入排序进行简单地介绍,通过图片来演示插入排序的过程,然后使用 Go 语言实现插入排序的算法。为减少算法中交换次数的逻辑,对算法进行优化,将交换的逻辑变成把前面的数往后移,最后将待排序的数插入到合适的位置即可。
  • 除了这种优化方式,还有一种改造方式:普通的算法往左查找的方式是线性查找,由于元素是有序的,因此线性查找可以换成二分查找,但是经过二分找到待插入的位置之后,也得移动前面的元素,相比上面的优化方法,还多了 O(logn) 的查找时间复杂度,因此我认为没有必要改造成二分查找。
目录
相关文章
|
8天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
44 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
139 80
|
3天前
|
算法 安全 Go
Go 语言中实现 RSA 加解密、签名验证算法
随着互联网的发展,安全需求日益增长。非对称加密算法RSA成为密码学中的重要代表。本文介绍如何使用Go语言和[forgoer/openssl](https://github.com/forgoer/openssl)库简化RSA加解密操作,包括秘钥生成、加解密及签名验证。该库还支持AES、DES等常用算法,安装简便,代码示例清晰易懂。
28 16
|
2天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
9天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
24 6
|
15天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
38 2
|
6天前
|
监控 算法 安全
解锁企业计算机监控的关键:基于 Go 语言的精准洞察算法
企业计算机监控在数字化浪潮下至关重要,旨在保障信息资产安全与高效运营。利用Go语言的并发编程和系统交互能力,通过进程监控、网络行为分析及应用程序使用记录等手段,实时掌握计算机运行状态。具体实现包括获取进程信息、解析网络数据包、记录应用使用时长等,确保企业信息安全合规,提升工作效率。本文转载自:[VIPShare](https://www.vipshare.com)。
19 0
|
1天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。