加油站(LeetCode 134)
Description
在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
Sample Input 1
gas = [1,2,3,4,5], cost = [3,4,5,1,2]
Sample Output 1
3
Sample Tips 1
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
Sample Input 2
gas = [2,3,4], cost = [3,4,3]
Sample Output 2
-1
Sample Tips 2
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
Sample Input 3
temperatures = [30,60,90]
Sample Output 3
[1,1,0]
Tips
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
算法思想:
暴力破解
暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。
如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。
暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
for (int i = 0; i < cost.size(); i++) {
int rest = gas[i] - cost[i]; // 记录剩余油量
int index = (i + 1) % cost.size();
while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
rest += gas[index] - cost[index];
index = (index + 1) % cost.size();
}
// 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
if (rest >= 0 && index == i) return i;
}
return -1;
}
};
贪心法
直接从全局进行贪心选择,情况如下:
- 情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
- 情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。
- 情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int min = INT_MAX; // 从起点出发,油箱里的油量最小值
for (int i = 0; i < gas.size(); i++) {
int rest = gas[i] - cost[i];
curSum += rest;
if (curSum < min) {
min = curSum;
}
}
if (curSum < 0) return -1; // 情况1
if (min >= 0) return 0; // 情况2
// 情况3
for (int i = gas.size() - 1; i >= 0; i--) {
int rest = gas[i] - cost[i];
min += rest;
if (min >= 0) {
return i;
}
}
return -1;
}
};
同时也可以换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。
如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。
区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了。
那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int totalSum = 0;
int start = 0;
for (int i = 0; i < gas.size(); i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
start = i + 1; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return start;
}
};
Java代码代码如下:
// 解法1
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int sum = 0;
int min = 0;
for (int i = 0; i < gas.length; i++) {
sum += (gas[i] - cost[i]);
min = Math.min(sum, min);
}
if (sum < 0) return -1;
if (min >= 0) return 0;
for (int i = gas.length - 1; i > 0; i--) {
min += (gas[i] - cost[i]);
if (min >= 0) return i;
}
return -1;
}
}
// 解法2
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int curSum = 0;
int totalSum = 0;
int index = 0;
for (int i = 0; i < gas.length; i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) {
index = (i + 1) % gas.length ;
curSum = 0;
}
}
if (totalSum < 0) return -1;
return index;
}
}