时域高通滤波算法(THPF)下

简介: 空域低通时域高通非均匀性校正算法

由于影响THPF算法收敛速度与其鬼影问题的根本原因在于大量无关的场景信息被参与到非均匀性校正参数的计算过程中,所以只要尽可能将更多的场景信息,特别是强物体从原始图像中排除,再将剩下的部分参与到非均匀性校正参数的计算过程,这样就可以尽可能减小非随机运动与场景中强物体对校正过程的影响,有效减少鬼影效应。根据这个思想,SLPF-NUC 预先采用空域滤波器将输入的图像信号进行分离。由于在空间上,场景中目标信号具有连续相关性,表现为空域低频性,而非均匀性是由各探测器阵列元独立产生,各阵列元对应的输出的非均匀性差异较大,表现为空域高频性,所以应用空域滤波器将原始信号分离成高频( HSF) 和低频( LSF) 两个部分,只利用高频部分参与非均匀性的校正。


最早的算法中采用了空域线性均值滤波器,场景中的边缘信号同时被平均,所以可以引入一个阈值Th,大于阈值时,可认为它是场景的边缘,置零,不参与非均匀性的校正。后续不断升级低通滤波器,SLPF(空域均值滤波高通非均匀性校正算法)->BFTH(空域双边滤波高通非均匀性校正算法)->GFTH(空域引导滤波高通非均匀性校正算法)->NLMTH(空域非局部均值滤波高通非均匀性校正算法)。也可以通过添加运动检测判断、自适应权重系数对算法进行改进,效果越来越好的同时,算法实时硬件实现的难度也在不断提高。

84e34e631ba6409cbf58638f7b111e65.png

MATLAB代码实现:

clear; 
closeall;
clc;
%% 初始化frameWidth  = 640;
frameHeight = 512;
M = 200;      % 时间参数image(:,:,:) = zeros(512,640,100); 
image_low(:,:,:) = zeros(512,640,100); 
image_high(:,:,:) = zeros(512,640,100); 
hsize = 5;
H = fspecial('average',hsize);
%% 帧间迭代fork = 2:100%读取序列图像fileName = ['.\序列图像\(', num2str(k), ')', '.Raw'];
image(:,:,k) = double(reshape(uint16(fread(fopen(fileName),'uint16'))
          ,[frameWidthframeHeight])');   
image_low(:,:,k)=filter2(H,image(:,:,k));
image_high(:,:,k) = image(:,:,k) -image_low(:,:,k);
image(:,:,k) = 1/M*image_high(:,:,k) + (1-1/M)*image(:,:,k-1);  
endimage_x(:,:) = image(:,:,k);
%% 测试图像filename    = '第100帧.Raw';
fid         = fopen(filename);
image_raw   = fread(fid,'uint16');
image_raw   = uint16(image_raw);
fclose(fid);
data_temp  = reshape(image_raw,[frameWidthframeHeight]);
image_raw   = data_temp';
image_raw = double(image_raw);
image_out = image_raw-image_x;
%% 输出结果图figure(1);imshow(image_raw,[]);title('原图像');
figure(2);imshow(image_out,[]);title('SLPF效果图');
目录
打赏
0
0
0
0
2
分享
相关文章
时域高通滤波算法(THPF)上
图像非均匀校正中的场景校正算法-时域高通滤波算法(Temporal High Pass Filtering, THPF)以及它后续的各种改进版本。空域和频域已经在之前的文章介绍过一些了,时域还没有。图像是二维空间域上的像素,随着时间的延续,每秒25、30、60帧,就成了视频,针对视频进行图像处理,就可以考虑增加一个时间维度,图像帧与帧之间是存在相关性的,结合时域滤波算法可以有效去除图像中的噪声和探测非均匀性问题。
457 0
时域高通滤波算法(THPF)上
m基于遗传优化的时域声辐射模态的振动控制算法的matlab仿真
m基于遗传优化的时域声辐射模态的振动控制算法的matlab仿真
150 0
labview信号时域分析算法
labview信号时域分析算法
192 0
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
107 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。

热门文章

最新文章