【Python】过拟合问题

简介: Tensorflow实现过拟合问题
importtensorflowastfimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt# 过拟合问题(train_image, train_label), (test_image, test_label) =tf.keras.datasets.fashion_mnist.load_data()
train_label_onehot=tf.keras.utils.to_categorical(train_label)
test_label_onehot=tf.keras.utils.to_categorical(test_label)
model=tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['acc'])
history=model.fit(train_image, train_label_onehot, epochs=10, validation_data=(test_image, test_label_onehot))
plt.plot(history.epoch, history.history.get('loss'), label='loss')
plt.plot(history.epoch, history.history.get('val_loss'), label='val_loss')
plt.legend()
plt.show()
plt.plot(history.epoch, history.history.get('acc'), label='acc')
plt.plot(history.epoch, history.history.get('val_acc'), label='val_acc')
plt.legend()
plt.show()
目录
相关文章
|
8月前
|
计算机视觉 Python
OpenCV轮廓拟合与凸包的讲解与实战应用(附Python源码)
OpenCV轮廓拟合与凸包的讲解与实战应用(附Python源码)
237 0
|
8月前
|
机器学习/深度学习 数据采集 算法
【Python机器学习】过拟合及其抑制方法讲解及实战(图文解释 附源码)
【Python机器学习】过拟合及其抑制方法讲解及实战(图文解释 附源码)
142 0
【Python机器学习】过拟合及其抑制方法讲解及实战(图文解释 附源码)
|
8月前
|
机器学习/深度学习 Python
【Python机器学习】全连接层与非线性回归、防止过拟合方法的讲解及实战( 附源码)
【Python机器学习】全连接层与非线性回归、防止过拟合方法的讲解及实战( 附源码)
301 0
|
3月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
552 3
|
4月前
|
算法 数据挖掘 Python
Python中的拟合技术:揭示数据背后的模式
Python中的拟合技术:揭示数据背后的模式
52 0
Python中的拟合技术:揭示数据背后的模式
|
8月前
|
计算机视觉 Python
使用Python进行多点拟合以确定标准球的球心坐标
使用Python进行多点拟合以确定标准球的球心坐标
176 1
|
8月前
|
机器学习/深度学习 算法 数据挖掘
数据分享|PYTHON用PYSTAN贝叶斯IRT模型拟合RASCH模型分析学生考试问题数据
数据分享|PYTHON用PYSTAN贝叶斯IRT模型拟合RASCH模型分析学生考试问题数据
|
8月前
|
机器学习/深度学习 算法 Python
【Python机器学习专栏】机器学习中的过拟合与欠拟合
【4月更文挑战第30天】机器学习中,模型性能受数据、算法及复杂度影响。过拟合(训练数据学得太好,泛化能力弱)和欠拟合(模型太简单,无法准确预测)是常见问题。理解两者概念、原因、影响及检测方法对构建有效模型至关重要。解决策略包括增加数据量、简化模型、添加特征或选择更复杂模型。使用交叉验证等工具可帮助检测和缓解过拟合、欠拟合。
176 0
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Python用GAN生成对抗性神经网络判别模型拟合多维数组、分类识别手写数字图像可视化
Python用GAN生成对抗性神经网络判别模型拟合多维数组、分类识别手写数字图像可视化
|
8月前
|
资源调度 数据可视化 数据挖掘
Python用PyMC贝叶斯GLM广义线性模型、NUTS采样器拟合、后验分布可视化
Python用PyMC贝叶斯GLM广义线性模型、NUTS采样器拟合、后验分布可视化